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ABSTRACT 

This paper presents a closed stochastic simulation network model and several approximation and 
bounding schemes for G/G/c systems.  The analysis was originally conducted to verify the integrity of 
simulation models used to develop alternative policy options conducted on behalf of the US Air Force.  
We showed that the theoretical bounds could be used to approximate mean capacities at various queues.   
In this paper, we present results for a G/G/8 system though similar results have been obtained for other 
networks of queues as well. 

INTRODUCTION 

In this paper we consider a closed stochastic simulation system model used in the analysis of aircraft 
engines maintenance and repair options.   In this analysis, we evaluated the cost and benefits of 
centralized maintenance versus a decentralized option. The usage and maintenance of engines comprises 
the sequence of events illustrated in Figure 1: Planes fly (sorties) from main bases and remote operating 
locations to meet training and other requirements. After each sortie, the planes’ engines are inspected on 
the flight line, and depending on the accumulated flying hours, are given minor maintenance.  Engines 
may also be removed from aircraft and sent to an intermediate maintenance facility (IMF) for major 
maintenance.  At this facility the engines are inspected, repaired, tested, and then returned to the flight 
line as serviceable spares. At each operating site there is a cache of serviceable spares to replace engines 
sent to IMF.  However, there is only a limited inventory of such spares there may be time where aircraft 
are grounded due to the engines availability.  
The nature of this problem has lent itself to a closed loop networks of multiple servers/queues, some 
sequential and others parallel. A queueing system is said to be closed if the servicing facility processes 
only a given group of permanent customers.  When a customer needs service, it joins the queue and it is 
either served based on FIFO discipline or is given priority if it meets a certain criteria (e.g., a particular 
engine is required in the field faster than other type).   The demand for service and duration of service 
depends on many variables and for this study we used historical data to compute the arrival and 
departure rates. The complexity of this problem led to queueing model that could only be described with 
general arrival and service times or a G/G/c/n queueing system where n, the restriction on system 
capacity, varied depending on the process. G/G/c queue and its related families, M/G/c, G/G/1 are too 
complex to analyze mathematically and there are very few closed formed results about such systems. 
However, several quite useful approximate and bounding results have been obtained.  We used these 
approximations and bounds to create a robust simulation model for a large-scale engine maintenance 
system. These bounds and approximations were used in evaluating the robustness of our simulation 
model. And their application will be the focus of this report.  In the next section, we will describe some 
of the results associated with G/G/c.  



  

G/G/1 SYSTEM 

The G/G/1 system and its theoretical results are used to derive what is presently known about the G/G/c 
system and thus will be discuss it first. We consider a G/G/1 system consisting of a single server with 
independent and identically distributed interarrival times as well as service times and unlimited 
queueing capacity. Let X  denote interarrival time and ( )xf x , 1 λ/ , and 2

xσ  denote the pdf, the mean and 
the variance of X , respectively. In addition, let S , ( )sf s , 1 µ/ , and 2

sσ  represent those corresponding 
for the service times. Although there are no closed form solutions for this model, there are some useful 
bounds developed in recent years for the quantities L , qL , W , and qW  (see [7] and [8]). 
 

Figure 1: Operation and Maintenance Sequence 

 
For G/G/1 systems with no restrictions on the interarrival or on the service time pdf’s, several bounds 
have been developed (see [5] and [6]).  These bounds, in essence, state that for the average steady-state 
waiting time in queue, qW , we have  
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where the coefficient of variation for the service times, s sC σ µ=  and, the utilization factor ρ λ µ= / . 
For the stability of the system we must have 1ρ < . Note that the lower bound given above is not tight. 
This becomes obvious from the fact that, even at very high utilization rates, the bounds takes negative 
values, unless 1sC > . But for sC to be greater than 1, it must be that the service time pdf must be “more 
random" than the negative exponential pdf which has its 1sC = .  

Desired class property 

A tight simple lower bound is given in [6] for a class of G/G/1 queues, which includes most encountered 
in practical cases. Thus, class requirement is that all queueing systems in it must have interarrival time 
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pdf, ( )xf x , satisfying the following property:  

 1[ ]   for all 0E X t X t t
λ

− | > ≤ ≥       (2) 

If it is known that any given interarrival gap lasted more than a time t , then the condition above requires 
that the expected length of the remaining time, X t− , in that gap be less than the unconditional expected 
length of the gap, [ ]( 1 )E X λ= / . This is of course true for the negative exponential variable, and in that 
case the condition becomes equality. When the condition holds, then we have:  
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The upper and lower bounds may now be derived using this and by applying Little’s formula, L Wλ= , 
q qL Wλ=  and the fact that 1 qW Wµ= / + . The following is easily obtained:  

 1
2 qU L Uρλ λ+⋅ − ≤ ≤ ⋅        (4) 

This implies that the difference between the upper and the lower bounds is (1 ) 2ρ+ / , but 0 1ρ< < , so 
this difference is always between 0.5 and 1. Thus, we can find the average queue length to within an 
accuracy of between 0.5 and 1 (depending on the value of ρ ).  Note that most “well-behaved" arrival 
time distributions satisfy the condition, including uniform, triangular or beta-type pdf’s, which often are 
reasonably good approximations of many general interarrival time pdf’s. Only a few common 
continuous random variables, such as those in the hyperexponential family, which are "more random" 
(informally speaking) than the negative exponential random variable, do not satisfy the condition.  

Under heavy-traffic 

Another important result that is available for the G/G/1 system is known as the heavy-traffic 
approximation (for more information see [3]). It applies for values of ρ  near 1 and thus provides 
estimates for waiting times when it is known that waiting times are large. When ρ  is near 1, the 
distribution of steady-state waiting time in queue in a G/G/1 system is approximately negative 
exponential with mean value qW U= . The average waiting time for G/G/1 queueing systems is 

dominated by a 1(1 )ρ −−  term under steady-state conditions, as the utilization ratio tends to 1. 
Consequently, the type of behavior that is normally seen in a simple M/M/1 system is also present for 
entirely general arrival- and service-time distributions, G/G/1.  

G/G/c SYSTEM 

The only general results on G/G/c system [2] that have been obtained to date are in the form of quite 
relaxed upper and lower bounds on average steady-state queueing characteristics. These bounds are 
often computed by, first, comparing a G/G/c system with a G/G/1 system that has the same "service 
behavior" as the G/G/c system. That is, the single server in G/G/1 works c times as fast as each of the 
servers in G/G/c and by applying the earlier results on G/G/1, given in the previous section. The most 
useful and applicable bounds on the average waiting time in queue which have been derived to date for 
G/G/c systems, based on those of G/G/1 is  
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where for each of the c servers, µ , 2
Sσ , and 2[ ]E S  are the rate, variance, and the second moment of 



  

service time, respectively. 1
qW  denotes the mean waiting time for a G/G/1 system with a service time 

denoted by a random variable 1S S c= /  with service c  times faster than that of each of the c  servers in 
the G/G/c system, but with an identical arrival process.   If 1

qW  is known or is computed using the results 
discussed above, we can substitute an exact expression.  Note that for the general M/G/1 system we have 
the following well-known results, which can be used in deriving the G/G/c approximation bounds:  
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Thus, for example, for the M/G/c queueing system, one should use the exact expression for 1
qW  given 

above with 1 cµ/  and 2 2
S cσ / , for the expected value and variance of the service times, respectively.  

The corresponding heavy-traffic approximation for G/G/c systems has been derived [4]. This result 
implies that: For cλ µ  approaching 1 in a G/G/c system, the waiting time in queue under steady-state 
conditions assumes a distribution that is approximately negative exponential with mean value  
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Note once more that expected waiting time is dominated by a (1 )ρ−  term, as ρ  approaches 1 
( cρ λ µ= /  for multiserver systems). We used the above results for G/G/c to have a point of reference for 
the simulation and test the results against these theoretical backdrops.   
 

AN OVERVIEW OF THE SIMULATION MODEL 

In terms of modeling, we are interested in the flow of entities (e.g., spares, personnel), the state of the 
system (e.g., engine not serviceable, spares inventory), and the processes (e.g., service time, sortie rates).  
The structure of the model is based on a set of hierarchical, functional blocks that generate and modify 
entities, processes and attributes. These blocks represent main bases, airfields, and intermediate 
maintenance shops.    In general, the simulation is based on the following sequence of events: aircraft 
are flown from main bases or remote sites to meet certain flying requirements. After each mission, the 
aircraft and their engines are inspected at the airfield and in most cases they are fully operational within 
hours.  However, when engines accumulate enough flying hours, or when unscheduled maintenance is 
required, engines are removed from the planes, and sent to an intermediate maintenance facility.  They 
are then inspected, repaired, tested, and returned to service.   The first requirement for the model is the 
number and types of aircraft, and the number and the age of installed engines. The aircraft and engines 
are combined to form fully operational aircraft.  They are sorted, based on the age of the engine, and are 
then queued for flying.  After each sortie, the aircraft is sent to the airfield block where it is inspected 
and maintained.  Each aircraft that passes the inspection is sent back to the pool of available aircraft.  
Some aircraft require minor repair, which is performed on the flight line.  The number of engines pulled 
from the aircraft is a function of the age and the type of the engine.  The detached engines are tagged 
according to the removal type (i.e., scheduled or unscheduled) and are sent to the IMF shop.  Aircraft are 
then identified as not operational and are queued for the next available serviceable engine.  These 



  

aircraft are either put back to service immediately, if there are serviceable spares available, or they await 
the arrival of engines from the maintenance shop. 
At the maintenance facility, engines are queued in two parallel lines, the first is for the engines that 
require parts that are not available and the other is for engines that await maintenance. The modular 
engines that have been processed by the IMF shop are sent to the module shops.  Engines that enter the 
module shop are separated into five modules.  Engines that leave the module shop are sent to the 
assembly and test cell. In this section, engines are queued for assembly, the test cell and the final 
inspection.  After assembly and test cell, engines are sent to the spare engines pool to be installed on the 
aircraft to create fully operations aircraft. These aircraft leave this section to join the pool of other 
aircraft and the whole cycle starts again. Figure 1 illustrates this process for only one main and operating 
base.  The model, however, has taken into account a problem with several such bases (for more 
information on the simulation model see [1]). 

Simulation set up 

In this section, we will present some of the input and output parameters used in our analysis. We will 
illustrate these parameters by running a scenario with 36 single engines aircraft and 66 two-engines 
aircraft.  The model is run for about two simulated years. 
Engines are typically set on a rail and require a 5-person team per shift.  The regular shift is about 8 
hours and the shops operate at 2 shifts a day.  During peak demand period, the shops may shift their 
operations to 24 hours a day, seven days a week with each shift as long as 12 hours. The capacity of the 
IMF is determined by the combination of rails and the personnel, a “rail team”.  Other shops have 
different architecture but all are bounded by number of staff and the equipment.  Airfields and the 
transportation network are bounded by the capacity of the flight line and the number of transporters, 
respectively.  
There are three smaller main bases with three-rail team capacity and one large one with 7-rail teams 
capacity. In other words, 3 and 7 parallel servers, respectively.  There is also a remote facility with 8 rail 
teams.  The other parts of the shop (e.g., the module shop) are sized accordingly. 

Simulation Results  

On average about 119 customers entered the system (with variance of 253 and an standard deviation of 
15).  At the end of the simulation run, about 105 customers were served.  The IMF shop at the remote 
site (with 8 servers) reported an average wait time of 5.538461538462 days.  Although the arrival and 
the service times varied widely, as they depend heavily on the other parts of the system, the reported 
wait time seemed reasonable and was consistent with the theoretical bounds.  Using the Poisson 
distribution, we get a wait time of 2.06 days and 4.13 using the Exponential distribution. d 10 days for 
the average wait. 
Table 1 illustrates the theoretical bounds for a single server process in the inspection shop.  The 
simulation model reported an average of 0.808499576845 for the queue length and 10 days for the 
average wait. 

Table 1: Sample Results for a G/G/1 System 

Wait Time Length Distributio
n 

Utilization 
Factor Var (X) Var (S) LB UB LB UB 

Poisson 1.32 0.33 0.25 - - 0.06130 - 
Exponential 0.757576 0.1089 0.0625 0.78125 1.07125 3.125 3.24621 

Uniform 0.08 0.020833 0.003333 - 0.01050 - 0.00840 
Normal 0.18018 0.900901 5 2.58725 3.24225 2.51103 2.92094 



  

Customers enter the last server. 

Table 2 illustrates the arrival and departure rates for the sequence of servers in the maintenance process.  
Some customers bypass the first queue and enter the second queue with multiple servers.  After the 
service, some customers, again, bypass the next server.  In this section, there are five parallel servers and 
customers depending on their requirement must enter a particular server queue.   Finally all customers 
enter the last server. 

Table 2: Arrive and Departure in the JEIM Shop 

Server 
(Single) 

Server 
(multiple) 

Server (Single) 
5 Parallel 

Server 
(Single) 

A D B A D A D B A D 
33 25 86 111 104 94 92 10 102 96 

 
Table 3 illustrates the theoretical versus simulated bounds for the first queue, in the eight-server scenario 
discussed above.   

Table 3: Sample Results for a G/G/8 System 

Queue 
Wait Time Length Simulation 

Results Distribution 
LB UB LB UB W L 

Poisson Arrivals ─ ─ ─ ─ ─ ─ 
Exponential 3.21107 4.97622 1.22465 1.64215 5.04683 5.66852 
Uniform 0.68181 1.3561 .02367 .15627 3.97198 3.20338 
Normal 2.58725 3.24225 2.51103 2.92094 5.04280 5.89083 

 

CONCLUDING REMARKS 

In this paper we presented a closed stochastic simulation network model and several approximation and 
bounding options available in a G/G/c system.  The analysis was conducted to verify the integrity of the 
simulation model used to developed alternative policy options conducted on behalf of the US Air Force 
and presented in [1].  We showed that the theoretical bounds could be used to approximate mean 
capacities at various queues.   In this paper only the results for G/G/8 was presented in order to avoid 
lengthy tables of results.  However, such consistency was observed amongst the other queues.  
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