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ABSTRACT 

 
Not many studies have been undertaken on forecasting lumpy demand.  This exploratory study proposes 
two measures for characterizing lumpy demand: a lumpiness factor and a coefficient of skewness.  These 
measures are applied to actual lumpy demand data of an electronics distributor operating in Monterrey, 
Mexico.  Guidelines for short-term forecast performance are suggested.  Three forecasting methods, 
exponential smoothing, Croston’s method, and neural networks, are applied to the data set.  Forecast 
performance is evaluated, and preliminary observations are presented.  
 

INTRODUCTION, METHODOLOGY AND INDUSTRIAL DATASET 
 
The problem of controlling items with lumpy demand patterns—e.g., extremely irregular with major 
differences between each period’s requirements and with a large number of periods with zero 
requirements—has received relatively little attention, even though these items constitute an appreciable 
portion of the inventories in parts and supply types of stockholdings.  Lumpy demand arises in service 
parts and electronics components when there are variations in volumes associated with the product mix, 
and also with intervals between demands being fairly erratic and unpredictable.  This study aims to 
identify relationships between forecast performance and lumpy demand patterns across three forecasting 
methods. These methods are applied to actual demand data of an electronics distributor in Monterrey, 
Mexico, involving 24 products and 967 weekly observations, exhibiting a wide range of demand values. 
 
We propose two measures for characterizing lumpy demand: (i) a lumpiness factor and (ii) a coefficient 
of skewness, which consider spread and skewness as key factors for forecasting performance in lumpy 
data.  To the best of our knowledge, this is the first paper to suggest the use of either measure.  
However, due to space limitations, we are able to discuss only the lumpiness factor here.   
 
Lumpiness Factor 
 
The lumpiness classification is based on the coefficients of variation of both the demand transactions 
(sizes of non-zero demands) and the numbers of periods of zero demand.  In this discussion, we focus on 
six of the 24 products under study (products 4, 8, 14, 17, 21, and 22).  Table 1 depicts the differences in 
terms of non-zero demand sizes and the numbers of periods of zero demand.  While all six items shown 
in Table 1 exhibit lumpy demands, significant differences do appear to exist among their demand 

patterns.  The lumpiness factor, 
I

S
CV

CV=γ , provides a measure of the relative variability between the 

stochastic distributions of non-zero demand sizes (S) and the number of intervals (I) between non-zero 
demands.  For instance, products 4 and 22 have lumpiness factors of γ = 4.667 and 4.674, respectively.  



  

  

These lumpiness factors are higher than those of products 17 and 14, which are, respectively, γ = 1.366 
and 1.426.  This implies that, in relative terms, products 4 and 22, when compared with products 17 and 
14, have relatively larger variation in non-zero demand sizes vis-à-vis the variation in number of periods 
of zero demand.  In other words, products 4 and 22 have relatively much lumpier demands than products 
17 and 14.  For purposes of this exploratory study, we introduce three categories of lumpiness factors: 
low (γ < 1.5), medium (1.5 < γ < 3), and high (γ > 3).  Products 8 and 21 have lumpiness factors of γ = 
2.514 and 2.554, respectively, which suggest medium demand lumpiness as compared to the low 
lumpiness of demands for products 17 and 14 and the high lumpiness of demands for products 4 and 22. 
 

Table 1.  Statistical data for lumpy demand classification 
 

17 14 8 21 4 22
Intervals
Mean 4.304 4.679 4.731 4.196 3.966 4.370
Std. Dev. 4.682 3.797 4.015 3.924 2.710 3.982
Skewness 3.191 1.868 1.849 2.222 0.790 1.826
Coeff. Of Variation 108.801 81.138 84.875 93.506 68.327 91.125

Sizes
Mean 258.380 466.484 561.273 950.610 783.372 2058.263
Std. Dev. 383.877 539.803 1197.596 2270.318 2498.223 8765.903
Skewness 2.373 8.256 3.253 4.363 6.461 6.021
Coeff. Of Variation 148.571 115.717 213.372 238.827 318.906 425.888

Lumpiness Factor 1.366 1.426 2.514 2.554 4.667 4.674  
 

FORECASTING TECHNIQUES 
 
In the current study, we deal with products whose lumpiness factors fall under the low, medium, and 
high categories as defined above.  We apply three forecasting techniques in our evaluation: simple 
exponential smoothing, Croston’s method, and neural networks.  Croston’s method was developed 
primarily to forecast seasonal intermittent demand of P&O Steam Navigation Co. of London, England 
[3].  The model is based on forecasting two separate components, the time between consecutive 
transactions and the size of the individual transactions. 
 
The most popularly used method for training ‘perceptrons’ in artificial neural networks is the back 
propagation (BP) algorithm [4].  We apply 3-layer and 5-layer BP networks in the current study.  In 
addition, we use general regression neural networks (GRNN), which work by measuring how far a given 
sample pattern is from patterns in the training set in N-dimensional space, where N is the number of 
inputs in the problem [5].  GRNN interpolates the relationship between inputs, as well as between inputs 
and outputs, by applying smoothing parameters to moderate the degree of non-linearity in the 
relationships and serve as a sensitivity measure of the non-linear response of the outcome to changes in 
the inputs [1].  Table 2 presents the parameters for the three neural network models applied in the 
current study.   
 

PRELIMINARY RESULTS AND FURTHER WORK 
 
Table 3 presents the MSEs resulting from the forecasting methods under evaluation.  In the case of 
product 17 (low lumpiness factor), there did not appear to be a clearly superior method, although the 5-
layer BP neural model yielded the lowest MSE, followed closely by GRNN.  For product 21 (medium 



  

  

lumpiness factor), the GRNN model shows an MSE far smaller than that of any of the other methods.  
However, for product 22 (high lumpiness factor), Croston’s method yields the smallest MSE although 
GRNN is not far behind with respect to the MSE criterion.  The results appear to be consistent with 
earlier findings by Caudill [2] who recommends GRNN for multiple output prediction, particularly for 
use with sparse data and data widely varying in scale. 
 

Table 2.  Neural Networks and Model Parameters 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3.  MSEs for Various Forecasting Methods 
 

Product 17 Product 21 Product 22
Forecasting Method
Neural Networks
3 Layer Back Propagation 4,436 1,682,779 21,608,555
5 Layer Back Propagation 2,019 1,657,714 22,286,391
General Regression Network 2,984 50,050 8,566,566
Exponential Smoothing 5,009 3,048,608 40,812,885
Croston's Method 5,496 3,514,186 8,193,469  

 
Thus far, the GRNN neural model appears to perform fairly well across low, medium, and high 
lumpiness factors.  It is not generally easy to obtain lumpy demand data, and the relatively significant 
amount of data made available for this exploratory study may provide a wealth of information waiting to 
be mined.  We intend to continue evaluating the alternative models for the remaining 21 items in the 24-
product data set at hand, and we will report on our progress down the road.   
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Input Neurons 7 7 7 7 7 7 7 7 7
Output Neurons 1 1 1 1 1 1 1 1 1
Hidden Neurons 19 N/A 312 19 N/A 312 19 N/A 312
Neurons in 1st Hidden Layer N/A 15 N/A N/A 15 N/A N/A 15 N/A
Neurons in 2nd Hidden Layer N/A 15 N/A N/A 15 N/A N/A 15 N/A
Neurons in 3rd Hidden Layer N/A 15 N/A N/A 15 N/A N/A 15 N/A
Activation Function Logistic Logistic Logistic Logistic Logistic Logistic Logistic Logistic Logistic
Learning Rate 0.1 0.1 N/A 0.1 0.1 N/A 0.1 0.1 N/A
Momentum 0.1 0.1 N/A 0.1 0.1 N/A 0.1 0.1 N/A
Initial Weights 0.3 0.3 N/A 0.3 0.3 N/A 0.3 0.3 N/A
Smoothing Factor N/A N/A 0.3 N/A N/A 0.3 N/A N/A 0.3

Product 21 Product 22Product 17 
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