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ABSTRACT 

 
This study introduces growth optimization with downside protection as a portfolio selection technique 
based on the Power-Log utility function. The selected optimal portfolios extend from one that maxi-
mizes growth and is very risky, to portfolios with substantial downside protection. The technique can be 
used with all types of assets, including those with highly skewed return distributions and fat tails. This 
study uses a riskless asset, a stock-index and a call option to show that at every level of expected portfo-
lio return, optimal Power-Log utility portfolios consistently have less downside risk and greater upside 
potential than the corresponding Markowitz mean-variance efficient portfolios. 
 
Introduction 
 
Harry Markowitz [8] laid out the mean-variance framework for portfolio construction that minimizes 
variance of return for a given expected return. Another approach to portfolio selection is based on multi-
period portfolio theory, and draws on the work of Mossin [10], Hakansson [4] [5], Leland [7], Ross [11], 
Huberman and Ross [6], and Grauer and Hakansson [1] [2] [3]. This method typically uses the Savage 
[12], Von Neumann and Morgenstern [14] expected utility criterion for choice under uncertainty to se-
lect a portfolio, where the utility function is either a log function, or a power function. The log utility 
function is a special case of the power utility function, and it produces portfolios with maximum growth. 
The growth optimization with downside protection technique combines the maximum growth properties 
of the log utility function with the scalable downside protection features of the power utility function. It 
enables investors to construct portfolios with positively skewed returns that give them high upside po-
tential along with downside protection. This study compares the portfolio compositions and return char-
acteristics of Markowitz mean-variance efficient portfolios with portfolios constructed by using the 
growth optimization with downside protection technique. The portfolios are constructed from three as-
sets: a riskless asset, a stock index, and an at the money call option on the stock index. 
 
Methodology 
 
The Power-Log utility function is a combination of a power function and the log function, and for that 
reason we refer to it as the Power-Log utility function. For returns less than zero the Power-Log utility 
function is a power function with power less than or equal to zero, and for returns greater than or equal 
to zero the Power-Log utility function is a log function. 
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The Power-Log utility function accommodates all investors. When the downside power is zero, the 
Power-Log utility function is the same as the log utility function, which maximizes portfolio growth 
over time. Maximizing portfolio growth is a natural goal for all investors, but typically involves more 
risk than most investors are willing to accept. An investor who is willing to take that risk can select the 
maximum growth portfolio by using a downside power function with a power of zero. An investor who 
wants more downside protection can use a downside power function with a lower value for the power. 
Lower powers provide greater downside protection. Another interesting characteristic of the Power-Log 
utility function is that it is continuously differentiable. The slope of the log function is 1 when the return 
is zero, and the slope for all the power functions is also 1 when the return is zero. The Power-Log func-
tion does not have a kink at a return value of zero. This feature allows the use of fast mathematical pro-
gramming algorithms for portfolio optimization. 
 
An optimal portfolio is constructed by selecting asset weights that maximize the expected utility of the 
portfolio for a given Power-Log utility function, using the joint return distribution of asset returns as an 
input to the optimization algorithm. We simulate the joint return distribution for the riskless asset, the 
stock index, and the at the money call option on the stock index. The joint return distribution contains 
10,000 observations. The assumed one-period returns for the assets correspond to annual returns ob-
served in U.S. capital markets. The riskless asset is assumed to have a return of 4%. The log of the stock 
index return is assumed to have a mean of 10% and a standard deviation of 20%. Assuming that the call 
has one year to expiration and is held to expiration, and that the stock index pays no dividends, the call 
price is calculated by using the Black-Scholes option pricing model for European options. The call’s 
price is in turn used to simulate its return distribution contingent on the simulated expiration date stock 
index prices. The call’s return distribution has a mean of 64.54%, a standard deviation of 188.48%, and 
a skewness of 1.39. The correlation between the call return and the stock return is 0.96. To make it eas-
ier to compare and interpret the results, all the optimal portfolios have been constructed with a no short 
sales constraint on the stock index and the call option. 
 
Results 
 
Table I shows the portfolios constructed by using the Power-Log utility function for downside powers of 
0 to –50 in the Optimal Power-Log Portfolios panel, and their expected returns are shown in the second 
column of the table. The corresponding Markowitz mean-variance (M-V) efficient portfolios shown in 
the table have been constructed to match the expected return of the optimal Power-Log portfolios. 
 

Table I 
 

       ------------ Optimal Power-Log Portfolios ------------    ------- M-V Efficient Portfolios ------- 

 Portfolio 

Expected 
Return 

(%)  
Downside 

Power 

Riskless 
Weight 

(%) 

Stock 
Weight 

(%) 

Call 
Weight 

(%)  

Riskless 
Weight 

(%) 

Stock 
Weight 

(%) 

Call 
Weight 

(%) 
                       
            
 1 21.93   0.00 -58.41 150.62 7.79   -104.97 204.97 0.00 
 2 17.85   -0.90 1.89 87.99 10.11   -58.36 158.36 0.00 
 3 15.78   -1.70 27.46 62.11 10.43   -34.59 134.59 0.00 
 4 12.66   -4.00 58.49 31.84 9.67   1.01 98.99 0.00 
 5 7.25   -50.00 93.31 1.56 5.13   62.85 37.15 0.00 

 
The optimal Power-Log portfolio in Row 1 of Table I has been constructed with a downside power of 0 
and is the maximum growth portfolio, since the Power-Log utility function with a downside power of 0 



   

is the log utility function. It is a very risky, leveraged portfolio with a short position in the riskless asset 
of 58.41%, but is expected to have the highest growth rate over time. As the downside power is lowered, 
more downside protection is built into the portfolios and the resulting optimal Power-Log portfolios are 
progressively more conservative. Remarkably, the weight of the call option relative to the weight of the 
stock in these portfolios increases as portfolio risk declines. This is due to the significant positive skew-
ness in the call option’s returns. 
 
The M-V efficient portfolios shown in Table I have the lowest variance for the given expected returns. 
All of them have a negligible position in the call option. Clearly the positive skewness of the call’s re-
turns carries no weight in the construction of M-V efficient portfolios. The leveraged stock portfolios 
dominate the call option in mean-variance space. Even though the 0.96 correlation between the stock 
and call returns is less than 1, the resulting percent weight of the call option in all the M-V efficient port-
folios is zero to two decimal places. The M-V efficient portfolio in Row 1 uses a great deal of direct lev-
erage, with a short position in the riskless asset of 104.97%, to achieve an expected return of 21.93%. 
For lower levels of expected return, the amount of leverage in the M-V efficient portfolio declines, until 
it is approximately zero in Row 4. The corresponding Power-Log portfolio in Row 4 is very different; it 
has a large weight of 58.49% in the riskless asset, a smaller weight of 31.84% in the stock and a signifi-
cant weight of 9.67% in the call option. The return characteristics of these two portfolios, as well as the 
other pairs of optimal Power-Log and M-V efficient portfolios are very different as well. 
 
Table II compares the minimum, maximum, standard deviation and negative semideviation below zero 
for the return distributions of the optimal portfolios. The entire range of returns for each optimal Power-
Log portfolio lies above that for the corresponding M-V efficient portfolio, showing that the Power-Log 
portfolios consistently provide better downside protection and greater upside potential than M-V effi-
cient portfolios. Interestingly, for expected returns above 20%, all the mean-variance efficient portfolios 
have a minimum return of “–100%,” i.e., bankruptcy. Markowitz mean-variance efficiency can be fatal 
for high-risk high-return portfolios! 
 

Table II 
 

    Minimum Return (%)  Maximum Return (%)  Standard Deviation (%)  Neg. Semidev. (%) 

 Portfolio 

Expected 
Return 

(%)  
Power-

Log 
M-V 

Efficient  
Power-

Log 
M-V 

Efficient  
Power-

Log 
M-V 

Efficient  
Power-

Log 
M-V 

Efficient 
                             
               
 1 21.93   -91.11 -100.00   310.67 282.84   48.54 46.67   17.03 18.38 
 2 17.85   -57.35 -87.47   255.89 219.42   38.69 36.06   12.15 13.78 
 3 15.78   -42.72 -73.75   224.77 187.10   33.45 30.65   9.81 11.43 
 4 12.66   -24.45 -53.18   173.67 138.66   25.25 22.54   6.46 7.93 
 5 7.25   -2.23 -17.46   73.15 54.53   10.00 8.46   0.90 1.98 

 
The standard deviation for the M-V efficient portfolios is slightly lower than the standard deviation for 
the corresponding Power-Log portfolios, since the mean-variance efficient portfolios have been con-
structed to minimize the standard deviation for a given expected return. However, standard deviation is 
an inappropriate measure of risk for assets with asymmetric return distributions. The Power-Log portfo-
lios’ larger positive deviations of return from their expected value, when compared to the mean-variance 
efficient portfolios, appear incorrectly as larger contributions to risk. These larger positive deviations are 
in fact highly desirable, and should not be penalized. Negative semideviation is a better measure of risk. 
It focuses on downside returns only, and is a measure of downside risk (Markowitz [9]). The negative 



   

semideviation for all the Power-Log portfolios is smaller than the negative semideviation for the corre-
sponding M-V efficient portfolios. Based on this measure, the Power-Log portfolios have consistently 
lower risk than the M-V efficient portfolios. 
 
Table III compares the asymmetry characteristics of the return distributions of the optimal portfolios. 
Predictably, all the M-V efficient portfolios have exactly the same skewness as the stock return distribu-
tion, 0.61, since they are all leveraged stock portfolios with negligible call option positions, while the 
skewness of the Power-Log portfolios increases consistently as risk decreases. The results clearly show 
the benefits of the Power-Log portfolios relative to the M-V efficient portfolios for investors who have a 
preference for positively skewed returns. 
 

Table III 
 

              Skewness      Value at Risk (%)    Value to Gain (%)           VtG / VaR 

 Portfolio 

Expected 
Return 

(%)  
Power-

Log 
M-V 

Efficient  
Power-

Log 
M-V 

Efficient  
Power-

Log 
M-V 

Efficient  
Power-

Log 
M-V 

Efficient 
                             
               
 1 21.93   0.90 0.61   55.71 66.24   161.08 148.99   2.89 2.25 
 2 17.85   1.06 0.61   36.67 50.26   131.88 116.01   3.60 2.31 
 3 15.78   1.13 0.61   28.13 42.12   115.61 99.20   4.11 2.36 
 4 12.66   1.23 0.61   16.97 29.92   89.27 74.02   5.26 2.47 
 5 7.25   1.37 0.61   1.87 8.73   38.39 30.28   20.55 3.47 

 
With the widespread use of derivatives and the need to control the risk exposure of portfolios and finan-
cial institutions, Value at Risk, or VaR, has gained popularity as a measure of exposure to large losses 
(Smithson [13]). It focuses on the probability and size of losses in the downside tail of the return distri-
bution. At a 99% confidence level, if VaR is $5 million then there is a 1% probability of a loss of $5 
million or higher. Since the Power-Log portfolios have asymmetric return distributions with fatter tails 
on the upside and thinner tails on the downside, a complementary measure for the potential value being 
added on the upside is the “Value to Gain,” or VtG. At a 99% confidence level if VtG is $50 million, 
then there is a 1% probability of a gain of $50 million or higher. The VaR and VtG are measures of loca-
tion for the tails of the distribution and can be used for dollar, or percent losses and gains. 
 
Table III shows the VaR and VtG for the optimal portfolios at the 99% confidence level. The VaR for 
the Power-Log portfolios is consistently lower at all levels of expected return than the VaR for the cor-
responding M-V efficient portfolios, and the difference in VaR is quite dramatic for the most conserva-
tive portfolios. The Power-Log portfolios do a better job of protecting investors against a large loss. The 
VtG for the Power-Log portfolios is also consistently higher than the VtG for the M-V efficient portfo-
lios. Besides doing the better job in protecting the downside, the Power-Log portfolios also do a better 
job of delivering higher potential gains to the investor. 
 
The ratio of VtG to VaR gives us an idea of the asymmetry in the tails of the portfolio return distribution 
with regard to gains and losses. It is different from skewness, since the skewness measure does not focus 
on the tails of the distribution exclusively, as does the VtG to VaR ratio. The last panel of Table III 
shows the VtG to VaR ratios for the optimal portfolios at the 99% confidence level. At a given level of 
expected return, the ratio shows the size of the potential gains relative to the size of the potential losses 
at the extremes. As expected, the Power-Log portfolios dominate at all levels of expected return, and 
much more so for the conservative portfolios. As we move from risky portfolios to conservative portfo-



   

lios the M-V technique pulls in the tails of the distribution symmetrically, resulting in a relatively flat 
VtG/VaR ratio, while the Power-Log technique pulls in the downside tail of the distribution much more 
than it pulls in the upside tail, resulting in dramatically higher VtG/VaR ratios for the conservative port-
folios. 
 
Conclusion 
 
This study introduces a portfolio selection technique based on the Power-Log utility function. It uses a 
riskless asset, a stock index and a call option to construct optimal portfolios, and show that the portfolios 
constructed by using the Power-Log utility function are consistently superior to Markowitz mean-
variance efficient portfolios for investors who want to maximize portfolio growth and for investors who 
are interested in reducing the downside risk in their portfolios without giving up too much upside poten-
tial. Portfolio selection based on the Power-Log utility function will be particularly useful in the man-
agement of hedge funds, bond portfolios, bank loan portfolios and insurance portfolios, since the assets 
in these portfolios have asymmetric returns. 
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