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ABSTRACT 

 
In this study we compare portfolios constructed by using a portfolio insurance strategy implemented 
with European put options with optimally hedged portfolios constructed by using an expected utility 
maximization with Power-Log utility functions. We use a riskless asset, a stock index and put options on 
the stock index to construct portfolios. We find that the optimally hedged portfolios have return distribu-
tions with risk and asymmetry characteristics that are consistently superior to those for the return distri-
butions of the corresponding portfolio insurance portfolios with the same expected returns. 
 

INTRODUCTION 
 
Downside protection for investment portfolios is typically implemented as a portfolio insurance strategy 
and seeks to limit losses, such that a portfolio’s value is either equal to or exceeds a prespecified floor 
value on the horizon date. It can be implemented with put options and dynamic hedging techniques. The 
dynamic hedging techniques include the option based technique developed by Rubinstein and Leland 
[32], and constant proportion portfolio insurance developed by Perold [24], described by Perold and 
Sharpe [25] for fixed income portfolios, and also described by Black and Jones [2] for equity portfolios. 
The option based dynamic hedging technique dynamically allocates the portfolio to positions in the risky 
asset and the riskless asset to replicate a put option, while the constant proportion portfolio insurance 
method dynamically allocates an amount equal to a prespecified multiple times the excess of the portfo-
lio value over the floor, to the risky asset.  
 
Portfolio insurance was widely used and publicized as a portfolio management strategy before the mar-
ket crash of October 1987.  In theory it guarantees a floor value for the portfolio, but real world condi-
tions including jumps in security prices, basis risk from horizons that do not match the maturities of se-
curities available in the market as well as less than perfect correlation between market indexes and man-
aged portfolios, and other factors listed by Rubinstein [29] add uncertainty to the final outcome. In prac-
tice there is typically no guarantee that the value of the portfolio will not drop below the floor value. 
This was amply demonstrated by the failure of portfolio insurance strategies during the market crash of 
October 1987. 
 
The traditional goal of downside protection can be described as deterministic, in that a fixed floor is 
specified for the portfolio value. Given the uncertainty associated with achieving this goal in the real 
world, a probabilistic approach might be more appropriate. For example, to compare the downside expo-
sure of two portfolios we can use Value at Risk (VaR), which is a probabilistic measure. VaR has gained 
popularity as a measure of exposure to losses (Smithson [35]).  At a 95% confidence level, if VaR is $1 
million, then there is a 5% probability of a loss of $1 million or more. A portfolio with a lower value of 
VaR is likely to have smaller losses than a portfolio with a higher value of VaR.  A probabilistic ap-
proach also allows us to use portfolio construction methods that are not based on a deterministic floor 
value for the portfolio. These methods have the potential for constructing portfolios that have character-
istics that are superior to those produced by traditional portfolio insurance techniques, and at the same 
time achieve the investor’s goal for controlling downside exposure. 
 

   



In this study we compare portfolios constructed by using option based portfolio insurance implemented 
with European put options with optimally hedged portfolios constructed by using expected utility maxi-
mization (Savage [34], and Von Neumann and Morgenstern [36]) with the family of Power-Log utility 
functions described in Kale [12]. We selected the Power-Log utility function technique to construct the 
optimal hedges, since it is very effective in accounting for the asymmetry in the option return distribu-
tions as well as the different levels of loss aversion for different investors.  Portfolio selection with 
Power-Log utility functions draws on multiperiod portfolio theory, which has been discussed exten-
sively in the literature by Kelly [13], Markowitz [18, 19, 20], Latane [13], Brieman [3, 4], Pratt [26], La-
tane and Tuttle [15], Mossin [23], Samuelson [31, 32, 33], Merton [21], Hakansson [8, 9, 10], Leland 
[16], Ross [28], Merton and Samuelson [22], Huberman and Ross [11], Grauer and Hakansson [5, 6, 7], 
MacLean and Ziemba [17] and others. 
 
Power-Log utility functions combine the maximum growth properties of the log utility function with the 
scalable downside protection features of the power utility function, and are particularly suited to the con-
struction of portfolios with low downside exposure.  Rendleman and McEnally [27] compared portfolio 
insurance to expected utility maximization using a log utility function for portfolio construction, but 
their study was limited since the log utility function does not have the scalable downside protection fea-
tures of Power-Log utility functions. 
 

PORTFOLIO CONSTRUCTION METHODOLOGIES 
 
An investor can use the option based portfolio insurance technique to limit downside exposure by select-
ing a floor value for the portfolio, and then buying a put option on the portfolio with a strike price that 
corresponds to the selected floor value. While the market crash of October 1987 appears to have discred-
ited option based portfolio insurance, there is plenty of evidence that investors still use put options on 
stock indexes to protect their portfolios. The December 2, 2004 issue of the Wall Street Journal reported 
an open interest of 2,566,101 put option contracts on the S&P500 index on the previous day, which was 
approximately twice the open interest in call options on the index on that day. The S&P500 index closed 
at 1191.37, and trading volume exceeded 1,000 contracts on out of the money put options on the index 
for strike prices ranging from 1190 down to 950, which is approximately 80 percent of the value of the 
index.  This data indicates that investors are actively using option based downside protection for protect-
ing their portfolio with floor values that go down to 80 percent of portfolio value. The selection of the 
floor value for a portfolio typically depends on the investor’s aversion to losses, and the range of strike 
prices at which these put options are trading suggests that investors’ aversion to losses varies widely. 
 
Optimal hedging is an alternative to setting a deterministic floor value for the portfolio. Portfolio selec-
tion with Power-Log utility functions allows investors to select a portfolio that reflects their loss aver-
sion. A Power-Log utility function is a combination of a power function and the log function. For losses 
the Power-Log utility function is a power function with power less than or equal to zero, and for gains 
the Power-Log utility function is a log function. 
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The family of Power-Log utility functions accommodates all investors. When the downside power is 
zero, the Power-Log utility function is the same as the log utility function, which results in the selection 
of maximum growth portfolios (Kelly [13]). While maximizing portfolio growth is a natural goal for all 
investors, typically the selected portfolios are much more risky than most investors want. An investor 
who is willing to accept a large amount of risk can select the maximum growth portfolio by using a 
Power-Log utility function with a downside power of zero, while an investor who wants less downside 
exposure can use a Power-Log utility function with a lower value for the downside power. 
 
An interesting and desirable characteristic of Power-Log utility functions is that they are continuously 
differentiable. The slope of the log function is 1 when the return is zero, and the slope for all power 
functions is also 1 when the return is zero. As a result, Power-Log functions do not have a kink at a re-
turn value of zero. This feature allows the use of fast mathematical programming algorithms for portfo-
lio optimization. The algorithm used for this study is a nonlinear mathematical programming algorithm 
based on an accelerated conjugate direction method developed by Best and Ritter [1], and has a super-
linear rate of convergence. 
 
To compare portfolios produced by portfolio insurance with optimally hedged portfolios selected by us-
ing Power-Log utility functions we use a time horizon of one year. The portfolio insurance portfolios are 
constructed by using a stock index and put options on the stock index with appropriate strike prices. The 
optimally hedged portfolios are constructed from the stock index, an at-the-money (ATM) put option on 
the stock index and a riskless asset.  Any put option or combination of put options and call options could 
have been used for constructing the optimally hedged portfolios, but we decided use only the ATM put 
option for the sake of simplicity. The assumed one-period returns for these assets correspond to annual 
returns that have been observed in U.S. capital markets. The riskless asset is assumed to have a return of 
4%. The stock index is assumed to have a current price of $100, and the log of the stock index return is 
assumed to have a mean of 10% and a standard deviation of 20%. Assuming that the put options have 
one year to expiration and are held to expiration, and that the stock index pays no dividends, we use the 
Black-Scholes option pricing model for European call options and put-call parity to calculate put prices. 
 
To construct the optimally hedged portfolios with Power-Log utility functions, we simulate the joint re-
turn distribution of asset returns and use that as input to the optimization algorithm. We start by simulat-
ing the stock index returns for the one-year horizon, and use those with the beginning of year stock in-
dex price of $100 to generate end of year stock prices. We then calculate the corresponding expiration 
values of the put options, and use those with the beginning of year put prices to generate put option re-
turns. The resulting joint return distribution for the riskless asset, stock index and put options contains 
10,000 observations. 
 

RESULTS 
 
For $100 invested in the stock index we construct portfolio insurance portfolios with end of year floor 
values of $80, $85, $90, and $95.  These floor values for the portfolios are the strike prices of the put 
options that are purchased to insure each portfolio respectively, and also represent the floor values as a 
percent of the investment in the stock index. They correspond to the range of actively traded put options 
on the S&P500 index reported in the December 2, 2004 issue of the Wall Street Journal. The Black-
Scholes put option prices for the four strike prices are $0.77, $ 1.47, $2.53 and $4.03 respectively, and 
the price of the ATM put option with a strike price of $100 is $6.00. 
 

   



We calculate the expected return for each portfolio insurance portfolio by using the simulated joint re-
turn distribution. Table I shows the four portfolios, their floor values as a percent of the amount invested 
in the stock index, their expected returns, and the investment weights of the stock index and correspond-
ing put option in each portfolio insurance portfolio. The expected return for the portfolio insurance port-
folios decreases as the floor value rises, since put options with higher strike prices must be purchased for 
the insurance, and they cost more. There is no investment in the riskless asset in the portfolio insurance 
portfolios. 
 

Table I 
 

        ----- Portfolio Insurance Portfolios -----   --- Optimal Power-Log Portfolios --- 

 Portfolio 
Floor 
(%) 

Expected 
Return 

(%)  

Riskless 
Weight 

(%) 

Stock 
Weight 

(%) 

Put 
Weight 

(%)  

Riskless 
Weight 

(%) 

Stock 
Weight 

(%) 

ATM Put 
Weight 

(%) 
                       
            
 1 80 12.23   0.00 99.24 0.76   -30.58 124.53 6.04 
 2 85 11.83   0.00 98.56 1.44   -24.92 119.04 5.88 
 3 90 11.26   0.00 97.53 2.47   -16.93 111.31 5.62 
 4 95 10.56   0.00 96.12 3.88   -6.74 101.47 5.27 

 
 
The last panel in Table I, “Optimal Power-Log Portfolios,” shows the optimally hedged portfolios con-
structed by using Power-Log utility functions. The optimal Power-Log portfolio in each row of the table 
has been constructed to match the expected return of the portfolio insurance portfolio in the same row. 
The optimal hedge is created by using the riskless asset, the stock index and the ATM put option. The 
resulting optimally hedged portfolios for all the floor values in the table are leveraged with borrowing at 
the riskless rate. Investment in the put option is preferred to lending at the riskless rate for reducing 
downside exposure, since the put return is significantly positively skewed. Interestingly, as the floor 
value decreases from 95% to 80%, both the optimal leverage from borrowing at the riskless rate and the 
investment in the ATM put option increase.  The increase in leverage pushes up expected portfolio re-
turn, while the increase in the ATM put option’s weight controls downside exposure.  
 
Table II shows the Value at Risk (VaR) and Value to Gain (VtG) at a 95% confidence level. Value to 
Gain is a measure for the potential value being added on the upside (Kale [12]). At a 95% confidence 
level if VtG is $1 million, then there is a 5% probability of a gain of $1 million or higher. The VaR and 
VtG are measures of location for the tails of the distribution and can be used for dollar, or percent losses 
and gains. 
 

Table II 
 

         Value at Risk (%)    Value to Gain (%)           VtG / VaR

 Portfolio Floor (%) 

Expected 
Return 

(%)  
Portfolio 

Insurance 
Power-

Log  
Portfolio 

Insurance 
Power-

Log  
Portfolio 

Insurance 
Power-

Log 
                         
             
 1 80 12.23   20.61 12.20   52.51 59.59   2.55 4.88 
 2 85 11.83   16.23 11.25   51.46 57.03   3.17 5.07 
 3 90 11.26   12.22 9.95   49.89 53.46   4.08 5.37 
 4 95 10.56   8.68 8.37   47.73 48.93   5.50 5.85 

 

   



 
The VaR of the optimally hedged Power-Log portfolios shown in Table II is smaller than that of the cor-
responding portfolio insurance portfolios for every floor value shown in the table. The difference is par-
ticularly striking for the lower floor values. The VtG for the Power-Log portfolios is also consistently 
higher than that of the corresponding portfolio insurance portfolios for every floor value. Overall, at 
each level of expected return, the risk and asymmetry characteristics of optimally hedged portfolios are 
consistently superior to those of the corresponding portfolio insurance portfolios. 
 
The last panel of Table II shows the ratio of VtG to VaR. The ratio shows the size of the potential gains 
relative to the size of the potential losses at the extremes. It is different from skewness, since the skew-
ness measure does not focus on the tails of the distribution exclusively, as does the VtG to VaR ratio. 
The Power-Log portfolios have consistently higher VtG to VaR ratios than the corresponding portfolio 
insurance portfolios. The difference in the ratio is greater for the lower floor values, since the VaR num-
bers for the optimally hedged Power-Log portfolios are significantly smaller than those for the corre-
sponding portfolio insurance portfolios. 
 
Table III compares the more traditional asymmetry and risk characteristics of the return distributions of 
the portfolios. The skewness of the Power-Log portfolio returns is greater than that of the portfolio in-
surance portfolios for every floor value shown in the table. The negative semideviation is the semidevia-
tion for returns below zero, and is a measure of downside risk (Markowitz [19]). It is consistently lower 
for the optimally hedged Power-Log portfolios than for the corresponding portfolio insurance portfolios. 
 

Table III 
 

               Skewness   Neg. Semidev. (%)

 Portfolio Floor (%) 

Expected 
Return 

(%)  
Portfolio 

Insurance 
Power-

Log  
Portfolio 

Insurance 
Power-

Log 
                   
          
 1 80 12.23   0.74 1.26   7.23 5.86 
 2 85 11.83   0.85 1.27   6.56 5.44 
 3 90 11.26   0.99 1.29   5.65 4.86 
 4 95 10.56   1.16 1.30   4.56 4.15 

 
 

CONCLUSION 
 
In this study we compare portfolios constructed by using a portfolio insurance strategy implemented 
with European put options with optimally hedged portfolios constructed by using an expected utility 
maximization with Power-Log utility functions. We use a riskless asset, a stock index and put options on 
the stock index to construct the portfolios. For a series of different floor values for the portfolio insur-
ance portfolios, we construct optimally hedged portfolios that match the expected returns of the portfolio 
insurance portfolios. We find that the optimally hedged portfolios have return distributions with risk and 
asymmetry characteristics that are consistently superior to those for the return distributions of the corre-
sponding portfolio insurance portfolios with the same expected return. 
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