
ANALYSIS OF ALTERNATIVE EVALUATION METHODS FOR MULTI-
CRITERIA PROBLEMS 

 
Ruiz-Torres, Alex, College of Engineering, Polytechnic University of Puerto Rico, San Juan, PR 00918, 

787-622-8000, aruiz@pupr.edu 
Lopez, Francisco J., College of Business, University of Texas at El Paso, El Paso, Texas, 79968-0544, 

915-747-7741, fjlopez@utep.edu 
 

ABSTRACT 
 

The consideration of multiple criteria in decision making related research is highly relevant as this 
represents decision making today. However, there is no uniformly used method to evaluate the 
performance of heuristics for multi-criteria problems when the objective is to generate all the Pareto 
efficient solutions. This research analyzes four methods available in the literature to assess non-
dominated solution sets by presenting cases and discussing the differences between the methods. The 
paper provides guidelines on how a method should be selected and proposes the use of multiple methods 
as a way to minimize the weaknesses of the individual methods. 
 

INTRODUCTION 
 
Decision making systems must consider multiple criteria in order to generate effective solutions. 
Organizations must be able to make decisions that provide balance between criteria such as cost, 
customer service, government regulations, and the environment to mention a few. Three types of multi-
criteria problem formulations are used to represent relationships among criteria. The first combines the 
multiple criteria into a function, resulting in a single objective that is optimized. The second, called 
hierarchical, ranks and optimizes the criteria as follows: the first criterion is optimized; the second is 
then optimized subject to no deterioration in the first, and so on. The third case searches for the Pareto 
efficient solution set (non dominated solution set). This last case serves to model systems were the 
objectives cannot be directly combined into a single measure. When this occurs, the problem is known 
as a multi-criteria problem of the non-dominated form. These problems are often difficult to solve, thus 
finding the best approach to generate efficient solutions is important. For example, a job shop 
scheduling problem with multiple machines, with a hundred orders, and with two important objectives, 
minimizing total cycle-time and number of tardy jobs, may have a dozen or more non-dominated 
optimal solutions and millions of possible schedules. Finding all of these schedules may take several 
hours or days of computing time. Because of this, heuristics are often developed that can find good non-
dominated solutions faster than an optimal search. Not only heuristics may require significant amounts 
of computation time, but also there may be a number of different heuristics for complex problems. 
Therefore it may be desirable to use only one or a few heuristics to solve a problem. The selection of 
which heuristics to use should be based on experimental performance over a significant number of test 
cases, choosing those that typically outperform all others. However, as expressed in [1], a critical issue 
remains unresolved: there is not a uniformly used and accepted evaluation method to compare sets of 
non-dominated solutions when there are no predisposed weights for the criteria in question. This paper 
presents part of a research project aimed at providing insights into the relative behavior of four 
comparison methods proposed in the literature for the evaluation of sets of non-dominated solutions. 
The behavior relates to the order of the heuristic solution sets and the selection of the best set. 

 
 

 



THE EVALUATION METHODS 
 
Four methods proposed to evaluate the output (non-dominated solution sets) of heuristics for the multi-
criteria problem of the non-dominated form are: the Distance 2 method [2]; the Best Deviation method 
[3]; the IPF method [1]; and the FDH formulation of DEA, proposed by [4] for a scheduling problem. 
For a more extensive list of other proposed methods see [1]. Consider a multi-criteria problem and let X 
be the set {x1, x2, …, x│X│} of criteria to minimize (if the objective is to maximize, the inverse can be 
considered) where │X│ is the number of criteria in X. Let xi[u] be the value of criterion xi for solution 
(or schedule) u. Assume that there are N heuristics H1, H2, …, HN or algorithms that generate Pareto-
efficient solutions, so there are N sets S1, …, SN populated only by non-dominated solutions. Let B be the 
optimal Pareto-efficient solution set for the problem, also called the benchmark solution set. If the 
optimal set is not know, let B be the set of efficient solutions of the combination of all N sets of 
solutions. Suppose that ND indicates the elimination of non-efficient solutions from a set. Then B = 
ND[S1 ∪ S 2 … S N-1 ∪ S N]. Let │B│ be the number of solutions in B. We describe and illustrate the four 
evaluation methods considered in this article with an example, based on the data in Table 1. As in is [5] 
the data is normalized for each scale. In this example, set B is assumed to be an optimal set. 
 

Table 1. Example Data. 
 Non-Dominated Solutions (Si) 
Heuristic Raw Data Normalized Data 

H1 {(91,5), (84,8), (78,22)} {(0.87,0.23), (0.8,0.36), (0.74,1)} 
H2 {(100,5), (95,6), (90,9), (88,16)} {(0.95,0.23), (0.91,0.27), (0.86,0.41), (0.84,0.73)} 
H3 {(80,11), (78,16)} {(0.76,0.5), (0.74,0.73)} 
H4 {(105,7), (98,12), (78,16)} {(1,0.32), (0.93,0.55), (0.74,0.73)} 
B {(90,5), (84,7), (80,11), (78,16)} {(0.86,0.23), (0.8,0.32), (0.76,0.5), (0.74,0.73)} 

 
 
The Distance 2 (Dist2) Method 
 
The Dist2 method [2] is based on the maximum of the minimum distances from all solutions v in the 
benchmark set B to all solutions u in the set of solutions SH. That is, for each solution v in set B, this 
approach identifies the solution u in set SH that is closest to it. For each of these pairs of solutions, it is 
possible to measure the distance between the two solutions with respects to each criterion. The 
maximum of these distances, among all pairs of solutions is the Dist2 measure, calculated as: D = max 

v∈B { min u∈SH  { max j∈X   abs ( xj[v] – xj[u] ) }}, where abs indicates absolute value. The Dist2 scores for 
H1, H2, H3, and H4 are 0.273, 0.095, 0.273, and 0.200 respectively. The lower the Dist2 score the better 
ranking of the corresponding heuristic, thus the best heuristic is H1 followed by H4 and then a tie 
between H1 and H3. The ranking is: H2, H4, (H1-H3).  
 
The Best Deviation Method (DEV) 
 
The DEV method [3] measures the “deviation” from the solutions in set SH to the solutions in set B. This 
method utilizes the normalized data by criterion for all calculations. The normalized deviation d u-v 
between a solution u in SH and a solution v in B is: d u-v = ∑j∈X  [max { 0 ,  (xj[v] - xj[u]) } ] / | X |. Note 
that the first super-index refers to a solution from set SH and the second to a solution from set B. The 
DEV method is based on the notion that, for the purposes of evaluation, a solution can be “worsened” so 
it falls within the dominance area of each solution in set B. For example a solution from set SH with bi-

 



criteria values (1000, 340) is being compared to solution (950, 450) in B. These two solutions cannot be 
compared since (1000, 340) is not in the dominance area of solution (950, 450). A worsened score for 
solution (1000, 340) is (1000, 450), which falls within the dominance area of solution (950, 450). Based 
on this concept, the smallest deviation of set SH with respect to solution v in the benchmark set B is 
expressed as: sd v   =  min u ∈ SH { d u-v }. The overall DEV score is the average of the smallest deviations 
for each of the points in the benchmark set B expressed as: DEV = ∑ v ∈B  [ sd v ]   / │B│. The DEV 
scores for H1, H2, H3, and H4 are 0.0376, 0.0971, 0.1136, and 0.1627 respectively. The smaller the 
DEV score, the better ranking, thus, the DEV ranking is H1, H2, H3, and H4. 
 
The Integrated Preference Functional Method (IPF) 
 
The Integrated Preference Functional method [1] is based on a function that evaluates the quality of sets 
of near-Pareto-optimal solutions for bi-criteria optimization problems. This approach incorporates 
weights to estimate the “expected” utility of each heuristic. The evaluation process requires estimating 
the optimal weight range for each solution. The weights are obtained from a weight function that 
contains or projects the preferences of the decision maker. The authors in [1] explain that this function 
can be thought of as “the probability of decision maker’s preference for the weight of each objective.” 
The IPF method generates a convex efficient frontier by removing non-dominated solutions that break 
convexity. This implies that the IPF method may use fewer solutions than other methods when 
evaluating heuristics. For example, this method does not take into account the normalized solution 
(0.933, 0.545) from S4 because otherwise the efficient frontier would not be convex. For the sake of 
brevity the process is not included and the interested reader is directed towards the original article. The 
IPF scores for H1, H2, H3, and H4 are 0.5337, 0.5709, 0.6302, and 0.6095 respectively. The smaller the 
IPF score, the better the heuristic, thus, the IPF ranking is H1, H2, H4, and H3.  
 
The Free Disposal Hull Method (FDH) 
 
The Free Disposal Hull (FDH) formulation of [6] is proposed by [3] as a means to compare heuristics 
for a scheduling problem. The FDH method compares scheduling solutions on a one-to-one basis and 
classifies them as “efficient” or “inefficient.” When no solution dominates the solution being evaluated 
the latter is considered efficient. As discussed, the benchmark set B serves as the reference set generated 
with solutions from all sets, when B is not a known optimal set. The “FDH efficiency score” of efficient 
scheduling solutions is one (indicating 100% efficiency) while that of inefficient solutions is less than 
one (less than 100% efficiency). The FDH-based method evaluates heuristics employing the FDH 
(DEA) “degree of efficiency” of the corresponding solutions. The degree of efficiency of an inefficient 
solution (not necessarily the same as its FDH efficiency score) can be computed in terms of the “slacks 
or surpluses” of the inefficient solution in relation to a solution that dominates it. As in the case of IPF, 
for the sake of brevity the equations have been omitted and the interested reader is refereed to [3]. The 
FDH scores for H1, H2, H3, and H4 are 0.932, 0.896, 1.00, and 0.922 respectively. As can be seen, 
heuristic H3 has an efficiency of 100% (best performer) while heuristic H2 has an efficiency of 89.6% 
(the worst performer). The ranking of the heuristics is H3, H1, H4, and H2. 
 

COMPARISONS AMONG METHODS 
 
We will summarize in our presentation the rankings of heuristics H1, H2, H3, and H4 according to the 
evaluation methods described above.  
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