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ABSTRACT 
 
This paper presents an analytical approach for simultaneous optimization of the number of vendors to 
employ and the order quantities to allocate to these vendors in a multi-product sourcing environment. 
The proposed approach can be used to support purchasing decisions in sourcing environments where 
vendors with varying prices quality and delivery performance levels offer volume discounts based on the 
total value of multi-product orders they receive from the buyer.  The paper discusses the multicriterion 
nature of the purchasing decision, presents a multiobjective mathematical model, and proposes a 
solution methodology. Results of an extensive experiment show that the computational efficiency of the 
proposed model to be quite satisfactory. 
 

INTRODUCTION 
 
Selecting vendors with various capabilities and performance levels from a large supplier base is a 
difficult and time-consuming task.  In his seminal work on vendor selection criteria, Dickson (1966) 
identified 23 different criteria by which purchasing managers have selected vendors in various 
procurement environments.  In practice, procurement cost, product quality, delivery performance, and 
supply capacity have been found to be the most frequently used vendor evaluation criteria. A review of 
74 supplier selection articles, by Weber et. al. (1991) found that these four criteria received the greatest 
amount of attention in the recent literature.  
 
The joint consideration of procurement cost, product quality, delivery performance, and supply capacity 
criteria complicates the selection decision because competing vendors have different levels of 
achievement under these criteria.  For example, the vendor with the least expensive price in a given 
industry may not have the best delivery performance or product quality.  Vendor selection is therefore 
an inherently multiobjective decision that seeks to reduce procurement cost, maximize quality, and 
maximize delivery performance concurrently.  
 
The presence of volume discounts further complicates the selection problem since the buying decision is 
no longer based on a single product that can be purchased from one or more vendors, but on the 
collection of items that can be sourced from a single vendor. In this case discounts are based on the 
aggregate value of multi-product orders placed with the vendor over a given period of time, regardless 
of the magnitude or value of each order quantity. As such, vendor selection is a multicriterion decision 
that affects the number and types of vendors to employ, as well as the order quantities to place with 
these vendors. 
 
This article introduces a multiobjective mixed integer programming model to support vendor selection 
decisions.  The mathematical model is formulated in such a way to simultaneously determine the 
optimal number of vendors to employ and the order quantities they must supply to each facility or plant 
in the supply chain so as to concurrently minimize total purchase cost, maximize product quality, and 
maximize on-time deliveries, while satisfying capacity and demand requirement constraints.   



 
MODEL DEVELOPMENT 

 
Consider a procurement situation in which i = 1, 2,…, I items are to be purchased for k = 1, 2,…, K 
plants from j = 1, 2,…, J vendors, that provide different levels of item price, product quality, delivery 
performance, and supply capacity for each item they sell.  Also, depending on the buyer's total purchases 
value vendor j offers a business volume discount having r =1, 2,…, Rj discount brackets.  For example a 
three-discount bracket schedule may be such that purchases worth less than $100,000 get 0% discount, 
purchases worth $100,000, but not exceeding $500,000 get an across the board 5% discount applicable 
to all purchases, not just those above the $100,000 cutoff point; and purchases worth $500,000 are 
discounted 10% to $450,000.   
 
Let Ji be the set of vendors offering item i;  Ij be the set of items offered by vendor j;  Kj be the set of 
plants that can be supplied by vendor j;  and Ki be the set of plants demanding item i.  Also, let Dik = 
units of item i demanded by plant k;  cijk = unit price of item i quoted by vendor j for delivery to plant k; 
qijk = percentage of rejected item i units from vendor j at plant k;  tijk = percentage of item i units from 
vendor j missing their scheduled delivery time window at plant k;  Sij = maximum quantity of item i that 
may be purchased from vendor j due to capacity constraints or other considerations;  ujr = upper cutoff 
point of discount bracket r for vendor j; and  djr = discount coefficient associated with bracket r of 
vendor j's cost function. 
 
Define decision variables as follows. xijk = units of item i purchased from vendor j for delivery to plant k. 
vjr = volume of business awarded to vendor j in discount bracket  r; observe that vjr is greater than zero 
only if the dollar amount of purchases made from vendor j falls within bracket r of its cost function; 
otherwise it is zero.   
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Mathematical Formulation 
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Constraint (2) ensures that the total demand of each item at each plant will be satisfied. Constraint (3) 
ensures that the total number of items procured by each supplier to all plants is within the production 
and shipping capacity of that supplier. Constraint (4) determines the dollar amount of business awarded 
to vendor j. Constraints (5)-(6) link the purchase of the item with the business volume discount to the 
appropriate segment of the discount pricing schedule for each vendor.  Constraint (7) ensures that only 
one discount bracket for each vendor's volume of business will apply. Constraints (8) and (9) ensure 
integrality and nonnegativity on the decision variables. Equation (1) specifies the multiobjective 
function whose components are given by equations (1a), (1b), and (1c).  Equation (1a) minimizes the 
total purchase cost.  Equation (1b) minimizes the number of defective items, and Equation (1c) 
minimizes the number of items missing their scheduled delivery time window. 
  
A number of optional constraints may be added to the above formulation to account for additional 
requirements of the procurement decision.  These constraints may be applied uniformly across all items 
and vendors or selectively to specific products or suppliers.  
 
Market Share Constraint. This constraint specifies that the buyer is willing to purchase no more than a 
given percentage Pi of item i total demand iφ from a given supplier. With this market share 

constraint may be expressed as:  
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(3') enforces the dual requirement of supplier's capacity and supplier's market share without increasing 
problem size.  
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Business Volume Constraint. This constraint limits the buyer's volume of business with supplier j to a 
maximum dollar value Uj.  Often, larger buyers would like to limit the amount of business they award to 
a single vendor to achieve their own supplier diversification goal, and also prevent small suppliers from 
becoming too dependent on them.  This constraint is expressed as follows: ,j
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Maximum Number of Supplier Constraint. This constraint limits the number of vendors the buyer is 
willing to do business with to a maximum of M suppliers.  Often, decreasing the number of suppliers 
helps the buying organization reduce administrative cost due to individual transactions, and facilitate the 
development of long-term supplier partnerships.  This constraint requires replacing constraint (7) by the 
following set of equations:  
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These optional constraints ultimately affect the type and number of vendors selected, their respective 
order quantities, as well as the total cost, quality and delivery outcomes of the procurement process.   



 
SOLUTION METHODOLOGY 

 
Two basic approaches may be used to solve multiobjective programming problems. These are the 
preference-oriented approach and the generating approach.  The preference-oriented approach consists 
of techniques that rely on a formal characterization of preferences among the objectives prior to solving 
the problem.  Generating techniques are suitable to situations where the articulation of preferences 
among the objectives is postponed until a range of alternative noninferior solutions is examined (see 
Cohon, 1978, for a comprehensive discussion).  These solutions help the decision maker to better 
understand the tradeoffs between the objectives before selecting a best-compromise solution.   Tradeoffs 
between the objectives are however relatively difficult to understand when more than two objectives are 
at hand.  For this reason, practitioners often prefer the preference-oriented approach to generating 
techniques.  An application of the preference-oriented approach to our problem is discussed next.  
 
Preference Oriented Approach. Assume that our procurement manager is in a position to articulate a 
value judgment between the objectives of high product quality and on-time delivery in the form of some 
dollar value attached to such objectives.  Let be the dollar penalty caused by one defective unit of 
item i at plant k to the purchasing organization. Also, let be the dollar penalty the organization suffers 
as a result of one unit of item i missing its scheduled delivery time window at plant k.  The 
Multiobjective function (1) can now be rewritten as:  
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Equation  is a single dimension (dollars) objective function, and our model can be now solved as a 
single-objective optimization problem. The optimal solution to equation (1') subject to constraints  
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(2)-(9) represents the best-compromise solution in respect to the articulated and  values. ikp ikl
 

COMPUTATIONAL EXPERIENCE 
 
An extensive computational experiment consisting of 192 different procurement environments obtained 
through the process of combining various values of the number of items, vendors, discount brackets, and 
plants was designed to test the computational efficiency of problem -(9).  The values of input factors 
were fixed as follows: items = 100, 200, and 300; vendors = 15, 20, 25, and 30; discount brackets = 3, 4, 
5, and 6; plants = 1, 2, 3, and 4. For each such procurement configuration, 10 randomly generated 
problems were run on a personal computer using the LINGO optimization package, with the clock time 
elapsing between the beginning of the run and the reporting of the optimal solution recorded.   
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Analysis of the optimization results reveals two observations.  First, the proposed model is 
computationally efficient. The largest problem of 4 plants, 300 items, 30 vendors, and 6 discount 
brackets was solved to optimality in about 2 CPU minutes. Second, solution times appear to grow 
exponentially in the number of plants, but are relatively more sensitive to the number of vendors and 
their respective discount brackets than to the number of items.    
 
References and the full version of this paper available from the author upon request. 
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