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ABSTRACT 

A new method for solving Reverse Convex Programs with applications in Supply Chain / Logistics 
is introduced.  The method is cutting plane based and uses a variation of cuts introduced in [4]. 
Cutting planes traditionally have been used as a valuable tool in devising exact algorithms for 
solving large-scale combinatorial optimization problems. A cutting plane can be used to effectively 
reduce the computational efforts in search of a global solution. Each cut is generated in order to 
eliminate a large portion of the search domain. Thus, a deep cut is intuitively superior in that it will 
exclude a larger set of points from consideration.  An upper bound and a lower bound for the optimal 
value is found and improved at each iteration. The algorithm terminates when all the generated 
partitions have been fathomed.  

INTRODUCTION 

In many areas of logistics, there are two or more players who compete for the scarce resources such 
as facility space, transport vehicle, as well as goods and services.  In certain problems, one player or 
agent has gained certain advantages (e.g., early market entry, or monopoly of important resources) 
that allow the player to act as a leader with a power to make the first decision.  The rest of the 
players, or followers, observe the leader’s decision and make their own decisions based on their own 
utility.  In this specialized game, the leader cannot make its decision without any regards to the 
consequences of such decision may have on other player.  That is, it may be harmful if the leader, by 
its decisions, forces the other players out of the market. One example of such game is a 
governmental agencies acting as a leader with the public welfare as its objective making tax 
decisions in order to curb firms’ pollution output.  These firms, as profit takers, are willing to absorb 
these taxes up to a limit but will leave the area if the leader’s tax decisions are detrimental to their 
operations.  This game can be modeled as a bilevel programming problem (BLPP) where the leader 
has an optimization problem of its own and imbedded in this optimization is the follower’s 
optimization problem.   We can denote the problem as, 
 

min{ ( , ) min{ ( , ) | ( , ) 0 , 0}}F x y f x y g x y x y| ≤ , ≥  (1)
 
It has been shown [1] that we can convert this problem to a single level problem with a reverse 
convex constraint: 

min{ ( ) 0 0} (P)c x Ax b g x x| ≤ , ≤ , ≥•  (2)
   
where in the above setting  is a concave function of 1ng R R: ⎯→ x . We define 

 to denote the polyhedral space where  is a real {P x Ax b x= | ≤ , ≥ 0} A m n×  matrix and  and  are 
real vectors of order n  and , respectively. Additionally, let 

c b
m { ( ) 0}G x g x= | ≤  and  to 

denote the feasible domain for problem (P). We also assume that 
F P G= ∩

F φ≠  and that  is bounded. 
Problem (P) is known to possess multiple local optimal solutions that are not globally optimal and 
hence the reason for its classification as a global optimization problem. It is well known that (P) is 
mathematically intractable and in principle, a very difficult problem to solve. It has been shown to 
belong to class of NP-hard problems ([2], [3], [4]).   

P



PRELIMINARIES AND NOTATION 

Consider problem (P) and let Argmin{ }x c x x P= |o • ∈  solve the associated linear program, herein 
referred to as (LP). Assume xo  is a non-degenerate vertex with  neighboring vertices of n

1 2 nx x … x, , , . Denote by , the set of neighboring vertices of ( )N xo xo , let ( )jx N x∈ o  and 
. That is  is the direction of a ray from (j jz x x= − o) jz xo  to jx , its neighboring vertex. It is easy to 

extract items such as  for every jz ( )jx N x∈ o  from the optimal simplex tableau of the linear 
program. That is, the tableau associated with the basic feasible solution xo  contains these 
parameters. Let jx  be an arbitrarily member of  and denote by , the intersection of 
boundary of  or  and the ray 

( )N xo jy
( )g x g∂ jx zα+o . The points { 1 }jy j … n, = , ,  are found by solving the 

subproblem (SP ) given below.  j

min{ 0 1 ( ( )) 0} (SP )j jg x x xα α α| ≤ ≤ , + − = ,o o  (3)
 
Additionaly, let x  solve (CP) a related convex problem defined as:  

max{ ( ) 0 0} (CP)c x Ax b g x x| ≤ , ≥ , ≥ ,•  (4)
  
Clearly, x  is feasible for (P) and thus it can be used to establish an initial upper bound. Furthermore, 
let (z x x= − o)  denote the ray passing through x  and xo  and for each vertex ( )jx N x∈ o  we let 

 to denote a ray passing through  and (j jz y x= − o) jy xo . The  is found by solving subproblem 
(SP ) as described above. Since 

jy
j xo  was assumed to be non-degenerate, such ’s are linearly 

independent. Assume  for 

jz
jz z≠ 1j … n= , ,  and construct the hyperplane  

and  where  

1{ ( )j jH x e D x x−= | − =o• 1}

1}
1 and

.

1{ ( )H x e D x x−= | − =o•

1 2 1 1[ ]j j n
jD z z … z z z … z j … n− += , , , , , , , , = , ,  (5)

1 2 1 1[ ]j j j nD z z … z z z … z− += , , , , , , ,  (6)
 
The ’s and  are known as convexity cuts or Tuy cuts, passing through jH H x  and , 

 and , , respectively. Each  splits  into two smaller polyhedral 

regions  and {

ky

1k … n k= , , ; ≠ j n

)jAx b e D x x−≤ , − ≥o• 1( ) 1}jAx b e D x x−

ky 1k …= , , jH P
1{ ( 1} ≤ , − <o• . The point x  may be thought of 

as a polar point of the convex region with the maximum distance from xo  on the boundary of  in 
the direction of . The cuts  and  split  into (

g
c 1jH j … n; = , , H P 1)n +  smaller polytopes, , jP

1j … n= , , , where 1 2 n nP P P P P 1+= ∪ ∪ ∪ ∪L  and for and {1 2 1}i jP P i j i j … nφ∩ = , ≠ , ∈ , , , + .  The 

region, , is contained in a cone  in 1nP + C nR  with x  as its vertex and ( jy x )−o ’s as its rays. Aside 
from x  and maybe some ’s,  does not contain any feasible points of (P) and thus will 
excluded from considerations. These polytopes are described as  

jy 1nP +

1{ ( ) 1}j jP x x P e D x x j …−= | ∈ , − ≥ ∀ = , ,o• 1 n.

}

 (7)
1

1 { ( ) 1 1n jP x x P e D x x j n−
+ = | ∈ , − ≤ , = , , .o L•  (8)

Also let  solve  1ju j … n, = , ,
1min{ ( ) 1 0} (P )j jc x Ax b e D x x x−| ≤ , − ≥ , ≥ ,o• •  (9)

 
for 1j … n= , , , respectively. If for any of the ’s, say, , ju 1

ju 1( ) 0jg u ≤ , i.e.,  is feasible for (P), 
then this implies that  and that it is a local solution to (P).  

1
ju

1
jy u= j



If the process does not terminate or none of the  is found feasible for (P) then the hyperplanes 
’s must be updated and  is moved deeper (in the direction of c ) and the new cut is appended 

to P in the following manner. Compute the vertical distance  from  for 

j
ky

k
jH kH

j
kd j

ku 1j … n= , ,  to the cut 
. Find index ,  if some of the ’s are feasible. If none were feasible, set . It is easy to 

show that the minimum distance of the  from the cut  is given by  where,  

kH l j
ky = ∞l

j
ku kH j

kd
1

1

|1 ( ) |
|| ||

jk
j k

k k

e u xDd
e D

−

−

− −
= ,

o•

•  (10)

and ||  denotes the vector norm. Let denote the shortest vertical distance of all ’s by ,  ⋅ || j
ku kd

min{ 1 and }j
k kd d j … n j= | = , , , ≠ l  .

,

P

(11)

Accordingly,  is translated by amount , in the direction of , to produce a deeper cut .  kH kd c ˆ kH
1 1ˆ { }k k k

kH x e x e uD D− −= | = l• •  (12)

The iteration counter is incremented by 10  and the process continues. It is well known that no 
feasible point of  will be eliminated by introduction of the Tuy Cut . On the other hand,  
which is a translation of  is deeper by the value of  and by construction dominant with respect 
to .   By construction  and the sequence of {

F kH ˆ kH
kH kd

kH 1k kP P+ ⊆ ⊆ ⊆L }kxo  is such that 1kc x c xk+≤o• • o  for 
any iteration . Furthermore, it is easy to show that the sequences of {  and { , are 
monotonically decreasing and increasing, respectively with a limiting value at 

k }kUB }kLB
xå .   

Convergence 

The proof of convergence is similar to that given in the Lemmas 1 and 2 of [4]. By the updating rules 
imposed on the hyperplanes , , and , the sequences of {  and {  for kH ˆ kH k

jH }jkc y• }jkc u• 1 2k …= , ,  
are monotonically increasing and clearly bounded and thus convergent.  

CONCLUDING REMARKS 

This paper offers a modification of the method presented in [4] to derive deeper cuts than that of the 
original concavity cuts. The algorithm also differs from that of [4] in that the branching process is 
executed at each iteration of the algorithm instead of taking place only once. This may seem more 
expensive than deriving an original concavity cut. But several studies and experiments with cutting 
planes in the context of cone decomposition have shown that it may be worth the added expenses if 
the derived cut is much deeper than the corresponding concavity cut. It is also worth noting that the 
number of cuts required overall may be much smaller than that with concavity cuts. This of course, 
remains to be investigated in computational experiments and follow up research.  
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