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ABSTRACT 
  

This study examines the relationship between portfolios and regressions, which is desirable for 
educational, mathematical, and theoretical reasons. Educationally, understanding this relationship 
simplifies the teaching and learning of both procedures. Mathematically, portfolio optimization and 
regression systems are abstractly, algebraically, topologically, and structurally equivalent. One is 
obtained from the other as if modeling clay, without tears or discontinuities, and what one learns in 
one system can be applied to the other. We show portfolios and regressions are equivalent at a 
theoretical level as well. In the economic-financial context, this theoretical equivalence means that 
mean-variance, efficient portfolios are in fact optimal predictors, which is necessary for arbitrage-
based investment valuation and for the study of arbitrage-based market adjustment. We use linear 
algebra and study the characteristics of Lagrange methods to make our point. We also provide 
specialized procedures to facilitate portfolio optimizations.  

 
INTRODUCTION  

 
Mathematically, linear regressions and portfolio optimizations share the same objects —vectors and 
matrices in the ℜ

k 

space of real numbers— and both procedures optimize real-valued, quadratic 
functions in a given coordinate system. Mathematically, portfolio optimizations and linear regressions 
are equivalent. The significance of this equivalency goes well beyond optimizing a quadratic function. 
For example, [1] have shown that excluding short sales maximizes the R-squared of the portfolio and, 
therefore, the exposure of the portfolio to the index; shorting securities lowers the R-squared and the 
systematic exposure. This makes sense; in the context of the single index model a long-only portfolio 
expresses confidence in market growth, while shorting securities implies the contrary. Additionally, 
there are many important econometric topics such as errors in variables, heteroscedasticity, stochastic 
variables, that offer promise for portfolio modeling. [2] and the first part of [3] focuses on portfolios and 
regressions. Our study unifies the perspectives and findings of these articles and provides additional 
clarifying material. Throughout the paper, we use a simple, numerical example readers can reproduce 
with readily available spreadsheet software. In the first section, we primarily clarify the procedures in 
[3] study. In the second section of the study, we present our own analysis, which uses coordinate 
systems. Regressions and portfolio optimizations are equivalent mathematically because they provide 
the same set of homogeneous coordinates, among other reasons. A simple transformation links 
regression estimates (Cartesian coordinates) to optimal portfolio weights (homogenous, barycentric). 
Our study of coordinate systems extends the literature on portfolio optimization. It also clarifies key 
issues in modern financial research such as the role of the risk free rate and the intercept in portfolio 
optimizations and regressions, and the numerical treatment of arbitrage. Optimal weights play a double 
role in portfolio optimization. The first role is the well-known one of wealth allocation ratios. The 
second, less known one, is that of signposts, markers –that is, a positioning system investors use to 
appraise the field, get oriented, and trade. 
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PORTFOLIOS AND REGRESSIONS  
 
Portfolio optimizations are calculated by finding those optimal weights, wi* = {w1, …, wk}, that 
minimize portfolio variance, for a given return. In addition, the sum of optimal weights must add up to 
one. The statistical indicators (means, variances, and covariances) are calculated using stock returns. It 
is well-known that a solution allowing for short sales (negative weights) can be obtained using 
Lagrange’s optimization set up: L = -σp2 -λ1 (∑ wiri – rp) -λ2 (∑ wi – 1), using obvious notation. 
However, quadratic mathematical programming is the tool of choice to calculate optimal portfolios 
because it provides solutions for both the nonnegative weights case (no short-sales allowed), and the 
short sales allowed case. The no short sales solution could also be obtained without mathematical 
programming using a variable reduction method described in [4]. Britten-Jones, [3], show that optimal 
portfolio weights for the tangent portfolio, which is the portfolio with the largest return-to-standard 
deviation ratio, can be calculated using ordinary regressions in the context of a no-arbitrage model. 
Britten-Jones’ procedure amounts to running the set of stock returns on a vector of ones (with Tx1, T 
=dimension equal to the number of observations) in a regression without an intercept. Then, the 
optimal portfolio weights are calculated by dividing each of the beta estimates by the summation of 
betas. The vector of residuals “inherits” the numerical values of the optimal portfolio. This is an 
example of EXCEL’s output for Britten-Jones procedure (Exhibit III in the study):  

 
 
Britten-Jones’s contribution is important for many reasons. For example, it shows the relationship 
among different optimization procedures, it provides an easy way to obtain portfolio weights, and it 
illustrates why optimal portfolios must also be optimal predictors (under a linear rule). Very importantly, 
the regression output provides indicators of reliability for portfolio weights (standard errors, t-ratios, and 
p-values), which is information that was severely lacking in portfolio analysis.  
 
In our study, we first note that using 1/T instead of 1 in Britten-Jones’ regressions make the vector of 
mean returns appear in the optimal regression, the X’y in b* = (X’X)

-1 

X’y. This means that the only 
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critical difference between portfolio optimizations and regressions is that the former employ the 
variance-covariance matrix (second moment about the mean), A, in wi* = A

-1 

R, where R is the vector of mean 
returns, while the regression optimization employs the matrix of second moments about the origin (X’X, 
where X is the T-by-k matrix of stock returns. Note that optimal portfolio weights for the tangent 
portfolio can also be calculated by rebalancing, see [5].  

 
COORDINATE SYSTEMS AND ARBITRAGE  

 
The ratios between between scaled and nonscaled optimal weights within each procedure are the same. 
As we know, the solutions in the regressions and the portfolio optimizations depend on ratios, not on 
absolute values. There is a proportionality factor in the relationship between weights across procedures. 
These are properties of homogenous systems, which also implies that we can regard regression estimates 
and portfolio weights as the coordinates of each system. Note further that if we use 1/T = 1/60, T being 
the number of observations in our sample, as Britten-Jones’ regressand constant, we find that both 
systems share the same incidence points, that is, the same vector of constants c in each of their 
simultaneous equations systems, A x = c.  
 
There is a relationship between homogeneous coordinates and homogeneous equation systems. Let A x 
= c, where —to simplify matters and to not get into generalized inverse issues— A is a square, non-
singular matrix. We can build its homogenous counterpart: A x – c = 0. This homogenous system has a 
nonzero, or nontrivial solution, if a system of a higher dimension has a solution. Bring in another 
variable, say lambda, and the solutions for x in terms of lambda are obtained. Barycentric coordinates 
are those in which the extra-variable is set to one. This type of coordinate system appears naturally in 
problems where the solutions are restricted to some maximum value (e.g., the initial wealth in the 
portfolio optimization case). Barycentric coordinate systems provide a frame of reference; the solution 
forms a barycenter, known in other contexts, as “center of gravity” and “centroid”.  
 
Because barycentric coordinates are homogeneous coordinates, they provide a common vertex, a 
common reference point to the two systems we have been studying —regression and portfolio 
optimization. However, we can find that point because the systems share the vector of returns. It is 
interesting to observe that the value of Lambda matches the returns-variability ratio in each of the 
systems at the optimum. It is easy to include a risk free rate in the analysis —replace the columns of ri 
with excess returns, ri – rf. In sum, portfolio optimizations and regressions share the same homogeneous 
coordinates becase they are algebraically equivalent. More importantly, this equivalence shows that 
arbitrage may be implemented using different information sets which, nonetheless, may carry the same 
information.  
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