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ABSTRACT 
 
This is a paper on intraday security price forecasting and trading technologies for best exection.  The 
author presents an intraday stock price prediction model by simulating stochastic processes of bid and 
asked prices with fractal volatility.  The model introduces a unique adaptive learning process, which 
improves the accuracy of forecasts.  Then, the model is taken to the trading environment where the 
trader’s objective is to minimize the market impact.  The situation analyzed is similar to that found in 
game theory.  Intraday price predictions are used as potential price limit strategies.  The solution to the 
problem is one of mixed strategies, which is found via the simplex method in the standard LP  problems. 
 

INTRODUCTION 
 
The best securities trading strategy must give the best execution.  Such strategy involves two aspects of 
trading.  One is the trader’s ability to predict the price over the entire trading time horizon.  And the 
other aspect is to minimize the market impact, when orders are placed. 
 
In this paper, we begin with Professor Stigler’s securities trading model where security prices are 
determined in the flow market to buy (or sell) and not in the stock market for securities to own (or hold).  
Therefore, even when the stock demand for securities remained unchanged, it is possible to see changes 
in security prices in the flow market and in fact, in multiple times.  It is this frequency of trades, which 
causes the price volatility.  In this context, Professor Stigler presented a trading rule to explain how the 
prices are determined.  Professor Stigler’s model overlooks the following. 
 
First, frequency of trading would differ and hence, the price volatility would differ at different trading 
times.  A correct analysis must examine the difference between the trading times and the calendar times.  
In this way, the fractality in volatility observed on the calendar time scale can be effectively accounted 
for.  Second, an implicit assumption that every trader is able to buy and sell however many shares they 
wish at any given price, i.e. the assumption of perfect competition, is unrealistic.  In reality, any 
reasonably large order impacts the market.  Third, the equilibrium structure changes frequently.  We 
ought to explain how the bid and asked prices change as a consequence.  Fourth, the stochastic process 
of security prices and of order arrivals as assumed in the Stigler’s model is one of uniform distribution.  
This is contrary to some latest findings that the stock prices follow the lognormal distribution.  We offer 
an alternative securities trading model. 
 

SECURITIES TRADING MODEL 
 
The securities trading model we propose follows several procedures.  First, we will generate daily log 
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traders.  Second, we then compute the mean and standard deviations for tb , i.e. tb  and btσ , and ta , i.e. 

ta  and atσ .  The time interval is 
390
1

=Δt .  Then, the minute average price drift will be given by 

tbt Δ⋅  and tat Δ⋅ .  However, the minute average volatility will be computed somewhat differently.  If 
the total number of trading in each minute is tdf  in a given day, d, then, the relative trading frequency at 

time t is ( )
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Third,  we will model a semi-random walk stochastic process similar to the Wiener process for the bid 

and ask prices as ( )p
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Fourth, apply the Stigler’s trading rule that if a buy order arrives at the market before a sell order, and if 

1+tB  is greater than 1+tA , the resulting equilibrium security price is given by 11 ++ = tt BP .  Otherwise, no 
trade will take place.  Similarly, if a sell order comes before a buy order, 1+tA  must be lower than 1+tB  in 
order for a trade to occur.  This completes the entire process of the price determination in the Stigler’s 
context.  In summary, the price is determined when the bid “crosses” the asking price. 
 

ADAPTIVE LEARNING 
 
Any forecasting model must carry with it its own prediction errors.  A successful trading technology 
must be able to quickly recognize the errors and adapt to the forecasting values.  The conventional 
adaptive expectation model, however, is not complete, as it essentially deals with a simple two-period 
paradigm.  When extended into multiperiods, any revision of expectation applies uniformly to all other 
future periods without affecting trends.  That is, the traditional adaptive expectation model will never 
capture errors made about trend reversal.  We propose the following model. 
 
Let thG  be initial forecasting values at time t for a future time h , as described above, where 

1−φ= ththth GG .  If thα  is an error made in a forecast done for h at time t, and the actual realized price at t 
+ h is htP+ , then ththht GP α−=+ .  Therefore, if 0>α th , htth PG +>  meaning that the prediction was 
overshot, and as such, the market should be predicted as bearish.  If 0<α th , the opposite is true.  The 
adaptive learning model that we are proposing here modifies thG ’s based on these thα  errors.  We will 
call these modified predictions as thF ’s, as opposed to thG . 
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If thχ  is the adjustment coefficient, our adaptive expectation takes the form of αχ−= ththth GF .  The 
symbol α  is the latest error.  If 10 <χ≤ h , the process is partial, while if 1>χh , it is lumpy or abrupt.  
Note that if thht FP =+ , then αχ=α thth .  That is, the ex post error equals the adjustment factor times the 
predicted (or estimated) error. 

 
TRADING STRATEGIES: AN APPLICATION 

 
Simulated intraday security prices provides useful information to professional buy side traders in 
obtaining the most “desirable” execution price.  Generally, intraday forecasting figures can be used as a 
series of limit order either to buy or to sell, as stated earlier.  In order to put this into the game theory 
framework, we consider the trader’s trading horizon, z.  If z = 5 minutes, there are 78 trading intervals, 

i.e. 78
5

390
= , and hence 78 strategies. 

 
Estimate the expected number of shares to be traded (q) as a regression function of bid and asks, i.e. 

tttttt baabq ε+β+β+β+β= 3210 .  Now one can construct a payoff matrix in a trading game based on 
the regression.  Using the results from regression, each cell in the payoff matrix can be represented 
by }{ ija ; m ..., 2 1, i ,=  and n ..., 2 1,j ,= .  The maximum expected number of shares that can be sold can 
be achieved by sellers’ placing mixed orders at different prices, but subject to satisfying the condition 
that∑ ≥

i
iij Vpa , where V is the value of the game and ip  is the probability with which an event }{ ija  

may occur for any given j.  Similarly, the buyer can also place mixed orders at different prices to ensure 
that∑ ≤

j
jij Wqa , where W is the value of game and jq  is the probability with which an event }{ ija  

may occur for any given i.  The solution values for ip  and jq  will then entail trading plans for each 
time interval. 
 

SUMMARY AND CONCLUSIONS 
 
A securities trading model as presented in this paper is rich in contents.  The standard error of 
forecasting can be used to compute the probability that a stock’s price may rise or fall by so much in 
some specified time.  It can also compute the Value at Risk or for that matter, the Value to Gain, all of 
which can be used as a trading tool.  In a longer term context, if we are concerned with monthly or 
yearly returns, we could easily incorporate some market equilibrium models into the analysis such as 
Capital Asset Pricing Model. 
 
The best execution often means the trader’s ability to beat what is known as Value Weighted Average 
Price (VWAP).  The model presented in this paper will certainly help to achieve that trading goal 
through the adaptive prediction model, on the one hand, and through the game theoretic mixed strategies, 
on the other, to minimize the market impact cost. 
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