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ABSTRACT 
 

Project selection is a major problem in managerial decision making. In this study, a deterministic model 
that schedules project starts is formulated as a binary integer program. This model is applicable in 
various settings such as selection of engineering projects in corporate planning, or in other planning 
environments in which the candidate projects are interdependent. Previous studies using similar 
methodologies which handled risk adjustments required estimation of parameter values that may not be 
realistic. This paper introduces certainty equivalence approach in handling risk in capital budgeting 
using deterministic models.  
 
 

INTRODUCTION 
 

Project selection is a major problem in managerial decision making. For instance, it is central to the 
portfolio selection process in investment planning and evaluation of engineering projects in engineering 
economic analysis. Because effective and efficient management of scarce resources is of paramount 
importance in every organization, this area has received considerable attention in the literature. 
Essentially, it is a resource allocation problem: determining the distribution of limited budgetary 
resources among competing alternative projects. This allocation of scarce resources under capital 
rationing must be done in order maximize value of the firm. In this study, a deterministic model that 
schedules project starts is formulated as a binary integer program. It is argued that the best way to utilize 
this model is in the context of a decision support system. Since such project selection problems usually 
have long planning horizons and far-reaching strategic impacts on the enterprise, the decision makers 
should use judgment and insight in addition to the scientific decision making tools. Furthermore, the 
results obtained must be analyzed by the decision makers based on their experiences of similar situations 
in the past and their intuition about the future.  
 
Not all projects involved in these analyses are independent. In this study, two main types of 
interdependencies among the candidate projects are considered. Mutually exclusive projects: A set of 
projects may have the same objective, and therefore, at most one can be selected. Dependent projects: It 
is possible for a major, or primary, project to have a number of secondary, dependent projects. The 
dependent projects can be selected only if the primary project is selected. Furthermore, there may be a 
certain level of timing dependency between the primary and the dependent projects. For example, a 
dependent project can start at the earliest so many time periods prior to (or after) the start of the primary 
project. There may also be similar restrictions on the completion of the projects.  
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PREVIOUS WORK 
 
The description given in the previous section is basically a multi-period capital budgeting problem with 
side conditions. The capital budgeting problem determines which projects to fund given a constraint on 
available capital. The net present value (NPV) of each project is calculated. and the objective is to 
maximize the NPV of the sum of the chosen projects subject to funding constraints. The capital budgeting 
problem is also referred to as the multidimensional knapsack problem [4]. A comprehensive review of 
knapsack problems is given by Pisinger and Toth [5]. Benli and Yavuz [2] formulated the 
interdependencies among candidate projects as a 0-1 programming problem and reported very favorable 
computational results. Value maximization requires that both NPV of the projects and risk of the 
projects must be accounted for simultaneously. Previous mathematical programming approaches to 
capital budgeting problems concentrated on net present value maximization ignoring impact of capital 
budgeting on risk of the firm. Benli and Bilici [3] introduced risk of the firm as a constraint so that risk 
of the firm will not creep upwards as project selection in the future tends to do if risk is not accounted 
for. Since introduction of total risk must be handled in a nonlinear manner systematic risk or beta of the 
projects was used in that study. 
 
 

MODEL 
 

Assume there are N projects to schedule. If project j (j = 1, . . . , N) is selected, it can start at any year k 
(k = 1, . . . , T) and continue for the duration, dj , without preemption. In order to allow any project j to 
start at period T, at the latest, and be completed at the end of period T + dj , the planning horizon is taken 
as T’ = T + (D − 1), where D = maxj {dj}. The associated indicator variable is defined as:  xjk is equal to 
1, if project j starts at year k = 1, . . . , T’,  and equal to 0, otherwise. Let ρjl be the resource requirement 
of project j during the year l (l = 1, . . . , dj) of its inception, and define 
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Then rjkt is the resource requirement of project j during year t if it is started in year k. Let Rt denote the 
total amount of resource available in year t (t = 1, . . . , T’). Clearly, it is not unrealistic to assume that 
the returns from projects are random variables and that it is possible to assign subjective probabilities for 
its possible outcomes. Let Gjl be the random variable, with a known probability distribution, denoting 
return of project j during the year l (l = 1, . . . , dj) of its inception, and define 
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Then Ajkt is the random variable denoting return of project j during year t if it is started in year k. In 
order to introduce certainty equivalence approach in handling risk, we need to define certainty 
equivalent of a random variable. Very simply stated, the certainty equivalent is “[t]he amount of cash 
someone would require with certainty at a point in time to make the individual indifferent between that 
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certain amount and an amount expected to be received with risk at the same point in time.” [29] More 
precisely, suppose that the decision maker has a utility function U(.) Suppose that Ajkt is the random 
variable denoting return of project j during year t if it is started in year k. Then the expected utility of 
this return is E[U(Ajkt)]. The certainty equivalent is the (nonrandom) amount CE(Ajkt) such that 
U[CE(Ajkt)] = E[U(Ajkt)]. [See [19] for a detailed discussion.]  
 
As a measure of decision maker’s risk aversion of the return of project j during year t if it is started in 
year k, define γjkt= CE(Ajkt) / E[Ajkt]; or CE(Ajkt) = γjkt E[Ajkt]. Let S denote an ordered set of pairs         
(i, j) œ [1, . . . ,N]×[1, . . . ,N] where i ≠ j. Define qij > 0, as the maximum allowable time lag for project 
j to start before project i is started, and define qij < 0, as the minimum allowable time lag for project j to 
start after project i is started. Similarly, rij > 0 is defined as the maximum allowable time lag for project j 
to be completed after project i is completed and let rij < 0 denote the minimum allowable time lag for 
project j to be completed before project i is completed. Note that the following strict inequality must 
hold for all pairs (i, j) œ S, qij + di + rij > dj. If qij + di + rij = dj , then the start and the completion time 
for project i is fixed with respect to project j, and therefore the projects i and j can be treated as a single 
project. Clearly, if qij + di + rij < dj , then there is no feasible way to schedule project i with respect to 
project j. Finally, for project i to be able to start in year k (k = 1, . . . , T), project j must have 
started at the earliest, 
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Let Gh denote the sets of mutually exclusive, disjunctive projects (h = 1, . . . ,H). At most one project 
can be selected from each set. The objective is to maximize the total discounted certainty equivalents of 
returns. Letting α be the risk free interest rate and recalling that CE(Ajkt) = γjkt E[Ajkt], define net present 
worth of project j as, 
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Then the problem can be stated as, 
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Constraint (7) ensures that any project can start only once. Constraint (8) states that the total resource 
requirement of the selected projects must be less than or equal to the total amount of resource available 
for that year. Constraint (9) ensures that, for all pairs (i, j) œ S, if project i is chosen then project j must 
also be chosen, and vice versa. Relaxing this constraint, allows the possibility for choosing project j 
without necessarily choosing project i. Constraint (10) enforces the feasible start times of projects i and j 
with respect to each other, where ν(i, j, k) and µ(i, j, k) are defined in (3) and (4), respectively. 
Constraint (11) ensures the selection of only one project in each group Gh (h = 1, . . . ,H).  
 
 

CONCLUSIONS 
 
Effective decision making is vital for any enterprise in coping with the rapid technological, social, and 
economical changes. Scientific decision making tools are essential for effective decision making. 
However, in many enterprises these tools are still not in extensive use and the decisions are generally 
made based on judgment and intuition. This managerial shortcoming results in an inadequate decision 
making process, thus reducing the competitiveness of these enterprises. The problem investigated in this 
study is the modeling of selecting interdependent projects over a planning horizon in order to satisfy the 
strategic goals of an enterprise and achieve value maximization. The binary programming model 
developed is essentially a multi-period capital budgeting problem with side conditions. Experimental 
runs of models of similar size and structure resulted in very promising computational times in the study 
by Benli and Yavuz [4], suggesting that the problems with actual data can be run well under few 
minutes. This is especially important because “what if” analysis is an indispensable part of analysis of 
strategic problems of the type discussed in this paper. 
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