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 ABSTRACT 
 
A Monte Carlo simulation is used to compare estimation and inference procedures in least absolute 
value (LAV) and least squares (LS) regression models with asymmetric error distributions. This paper 
compares mean square errors (MSE) of coefficient estimates to assess the relative efficiency of the 
estimators. Hypothesis tests for coefficients are compared on the basis of empirical level of significance 
and power.  For the LAV regression, the likelihood ratio (LR) test, Lagrange multiplier test, and the 
bootstrap test are examined. Several versions of the LR and bootstrap tests are considered.  The usual t-
test is used for LS regression. Factors considered that might influence estimation and test performance 
include the disturbance distribution and the sample size.  
 
 LEAST ABSOLUTE VALUE ESTIMATION AND TESTING  

 
In most previous studies comparing the performance of LAV and LS estimation, the distributions 
examined have been symmetric.  “Fat-tailed” distributions that introduce outliers have been used, but 
these have typically been symmetric fat-tailed distributions (Laplace, Cauchy, etc).  This paper examines 
the performance of LAV and LS coefficient estimators when the regression disturbances come from 
asymmetric distributions.  Also, hypothesis tests for coefficient significance are examined.  For the LAV 
regression, the tests compared include the likelihood ratio (LR) test and the Lagrange multiplier (LM) 
test suggested by Koenker and Bassett [12] as well as a bootstrap test. The tests are compared in terms 
of both observed significance level and empirical power.  Several versions of the LR and bootstrap tests 
are considered.  The LAV tests are also compared with the traditional t-test for LS regression.   
 
The model considered in this paper is the simple linear regression model  
 

yi = β0 + β1xi + εi (1) 
 

where yi is the ith observation on the dependent variable, xi is the ith observation on the explanatory 
variable, and εi is a random disturbance for the ith observation.  The distribution of the disturbances may 
not be normal or even symmetric in this examination. The parameters β0 and β1 are unknown and must 
be estimated.  For a discussion of algorithms to produce LAV coefficient estimates, see Dielman [3] [4].   
 
Bassett and Koenker [1] showed that the LAV coefficient estimator has an asymptotic distribution that 
converges to a normal distribution with nuisance parameter λ, where n/2λ  is the asymptotic variance of 
the sample median for a sample of size n from the disturbance distribution. The test we will consider is 
the basic test for coefficient significance, i.e., H0: β1 = 0. Koenker and Bassett [12] proposed three 
procedures for conducting hypothesis tests on the coefficients of LAV regression models. The three tests 
are based on Wald, likelihood ratio (LR), and Lagrange multiplier (LM) test statistics, each of which has 
the same limiting chi-square distribution. The LR and LM statistics will be examined in the Monte Carlo 
simulation. In previous studies, the Wald test has been shown to be inferior to the LR and LM statistics 
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in small samples, so it is not included in this study (See, for example, Dielman and Pfaffenberger [5] [6] 
[7] and Dielman [2]). The LR test statistic requires the estimation of the scale parameter λ, whereas the 
LM test statistic does not. One often-suggested estimator for λ can be computed as follows: 
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The e(.) are ordered residuals from the LAV-fitted model. A value of α = 0.05 is usually suggested.  This 
estimator will be referred to as the SECI estimator.  See McKean and Schrader [14], Sheather [15], 
Dielman and Pfaffenberger [5] and Dielman and Rose [9] [10] for discussion and use of this estimator.  
Also, see Dielman and Pfaffenberger [6] for a discussion of additional research relating to the problem 
of estimating λ.  
 
When computing the variance of the slope coefficient in a LAV regression, the estimator in equation (2) 
will be used.  However, four different options in constructing this estimator will be considered.  These 
options are as follows: 
SECI1: 1λ̂  uses z = 1.96 (the α = 0.05 value) and n' = total number of observations (n). 
SECI2: 2λ̂  uses t0.025 with n degrees of freedom rather than the z value and n' = total number of 

observations (n). 
SECI3: 3λ̂  uses z = 1.96 (the α = 0.05 value) and n' = n – r where r is the number of zero residuals. 

SECI4: 4λ̂  uses t0.025 with n – r degrees of freedom rather than the z value and n' = n – r where r is the 
number of zero residuals. 

 
The notation L1, L2, L3 and L4 will be used to indicate the LR test using variance estimator 1, 2, 3, or 4.  
Much of the literature in this area recommends using the estimator SECI3.   

 
The bootstrapping methodology provides an alternative to the LR and LM tests. In a LAV simple 
regression, for example, a bootstrap test statistic for H0: β1 = 0 can be computed in several ways, as 
discussed in Li and Maddala [13]. The following procedure will be used in this study:  The model shown 
as equation (1) is estimated using LAV estimation procedures, and residuals are obtained. The test 
statistic T = )ˆ(/0ˆ

11 ββ se− , is computed from the regression on the original data, where )ˆ( 1βse  

represents the standard error of the coefficient estimate. The residuals, ei (i = 1,2,�n), from this 
regression are saved, centered, and resampled (with replacement, excluding zero residuals), to obtain a 
new sample of “disturbances”, ei

*. The ei
* values are used to create pseudo-data as follows: 

 
  e + x +  = y *
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*
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where β̂ 0

 and β̂1
are the initial LAV estimates of the intercept and slope. The coefficients in equation 

(3) are then re-estimated to obtain new parameter estimates, β̂
*

1
 and β̂

*

0
, and the following test statistic is 

computed: )ˆ(/ˆˆ *
11

*
1

* βββ se = T − . The test statistic value, T*, is computed and saved, and the process is 

repeated a large number of times. For a test to be performed at a particular level of significance, α, the 
critical value is the (1 -α)th percentile from the ordered test statistic values. If the original test statistic, T, 
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is larger than this critical value, then the null hypothesis H0: β1 = 0 is rejected.  As with the LR test, four 
versions of the bootstrap, (B1, B2, B3, B4) will be examined depending on which estimator of λ is used. 

 
 DESCRIPTION OF THE SIMULATION EXPERIMENT 
 
The simulation is based on the model in equation (1). The sample sizes used are n = 14, 30 and 100. The 
disturbances are generated using stable distributions with the following combinations of characteristic 
exponent (alpha) and skewness parameter (beta): Beta = 0.0, 0.4 and 0.8 with Alpha = 1.2; Beta = 0.0, 
0.4 and 0.8 with Alpha = 1.8; Beta = 0.0 and Alpha = 2.0 (normal). Stable distributions are infinite 
variance distributions when the characteristic exponent is less than 2.0, so the LAV estimator would be 
expected to outperform LS in these cases.  When the characteristic exponent equals 2.0 (and beta is 
zero), the distribution is normal and LS will be optimal.   

 
The independent variable is generated as a standard normal random variable, independent of the 
disturbances.  Bootstrap tests used 199 bootstrap replications.  The value of β0 is set equal to zero 
(without loss of generality).  The value of β1 is set equal to 0.0 to assess the level of significance and is 
set equal to 0.2, 0.4, 0.6, 0.8, 1.0 and 2.0 to examine power.  For each factor combination in the 
experimental design, 5000 Monte Carlo simulations are used, and the number of rejections of the null 
hypothesis H0: β1 = 0 is counted for each setting. All testing is done using a nominal 5% level of 
significance.  
 
 SUMMARY OF RESULTS 
 
Estimation 
 
Table 1 contains ratios of mean square errors for estimates of the slope coefficient for sample size n = 14 
in Panel A, n = 30 in Panel B and n = 100 in Panel C.  Results suggest that the LAV estimator is 
preferred over LS for alpha of 1.8 or smaller, although the advantage decreases as alpha approaches two 
(normal distribution).  The advantage of LAV over LS also decreases as the skewness (beta) of the 
distribution increases with Alpha = 1.2.  The LAV estimator does not perform as well in this case, 
relatively speaking, when the disturbance distribution is skewed.  It still outperforms the LS estimator in 
terms of estimator efficiency, however. 
 
 

TABLE 1: RATIOS OF MEAN SQUARE ERROR OF ESTIMATES OF SLOPE 
(LS MSE / LAV MSE) 

 
Panel A: n = 14   Panel B: n = 30  Panel C: n = 100 
 
  Beta    Beta    Beta 
   0.0   0.4   0.8  0.0   0.4   0.8  0.0   0.4   0.8 
Alpha      
1.2 71.4 60.5 38.6  71.4 83.4 56.1  57.3 50.7 38.5 
1.8   1.2   1.2   1.1      1.3   1.4   1.5    1.2   1.3   1.3 
2.0   0.8      0.8      0.8 
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Hypothesis Tests 
 
Tables 2 – 4 (for n = 14, 30 and 100 respectively) contain the median percentage of trials in which H0: 
β1 = 0 is rejected for various combinations of test and coefficient value. The medians are taken over the 
disturbance distributions.  Thus the results for the symmetric distributions include Stable distributions 
with alpha = 1.2, 1.8 and 2.0 when beta = 0.0.  The asymmetric distributions include Stable with alpha = 
1.2 and 1.8 when beta is either 0.4 or 0.8.  When the coefficient value is zero, the empirical significance 
levels can be assessed; when it is non-zero, we can compare the power for the tests. 
  
Among the LR tests, LR2 consistently has median significance level closer to nominal when n = 14 and 
30.  There is little difference when n = 100.  Performance is similar for skewed and symmetric 
distributions. Among the bootstrap tests, there is little difference in performance for any of the 
experimental settings. The LM and LS t-test both have empirical level of significance close to nominal. 
The LAV and LS tests have relatively similar median power for the symmetric distributions.  This is not 
too surprising because one of the three symmetric distributions is normal and another is Stable with 
alpha of 1.8 which is not too different from a normal distribution.  The differences in power between the 
LAV and LS tests can be much greater when the distributions are asymmetric.  The LAV tests perform 
better than the LS t-test when disturbances are not symmetric. 
 
Making a choice among the LAV tests is somewhat difficult because the differences in power are 
relatively small.  It does appear that the LR2 test maintains relatively high power, even when the level of 
significance is lower compared to the other tests.  Also, the LM test seems to be consistently lower in 
power.  This negates some of the advantage this test might have due to the fact that it does not need an 
estimate of the nuisance parameter.  The LR3 test tends to have higher power than the other alternatives, 
but at the cost of considerably higher levels of significance.  The LR2 test seems to maintain a relatively 
good balance. 
 
As noted, the bootstrap tests have levels of significance that tend to be close to the nominal level.  They 
tend to have somewhat lower power, however.  Power for the bootstrap tests can be slightly lower than 
that for LR2, even when the level of significance is the same or lower for LR2.  Increasing the number 
of bootstrap iterations might improve the power of these tests. 
 
When sample size is large (n = 100), there is little difference among any of the LAV based tests.  These 
tests still improve on the LS t-test even in large samples when disturbances are asymmetric. 
 
All Tabled results and References are available upon request.  
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