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ABSTRACT 
 
We propose a multicriteria optimization framework to integrate customer preferences into tolerances 
specification procedures. The usual approach to specification of tolerances is to use a quality loss 
function approach for trading off costs and quality associated with tolerance specification decision. 
Despite its popularity, the loss function approach in specifying tolerances often fails to incorporate the 
qualitative preferences of the customer. As a consequence, resources expended on capturing the 
customer preferences such as customer attributes and product characteristics in the preliminary phases of 
design are barely utilized in the majority of the current tolerance determination models. The proposed 
model assigns customer-perceived relative importance weights to individual quality characteristics and 
then incorporates these weights to synthesize Pareto-optimal solutions, which will then represent 
optimal tolerances for the product.  

 
INTRODUCTION 

 
In a typical screening inspection, a product is either reworked or scrapped when a quality characteristic 
(QC) of interest falls outside the interval between upper and lower limits used for screening inspection. 
These limits are referred to as upper and lower screening limits (USL and LSL) and the interval between 
the limits is referred to as the tolerance. The choice of screening limits or tolerance is a primary 
determinant of the effectiveness of a screening inspection. Implementing tight tolerance may provide 
higher outgoing quality; however, the rejection costs can be excessive. On the other hand, a loose 
tolerance results in a lower outgoing quality and a lower rejection cost since lesser products are 
reworked or scrapped. A number of research works in the literature have considered the tradeoff 
between rejection costs and quality for specifying an optimal tolerance. A simple method to perform this 
tradeoff is quantifying quality in monetary terms using a Taguchi or an empirical loss function so that 
quality and rejection costs can be summed to yield a single objective optimization model [1-6]. The 
tolerance specified can also have an effect on the manufacturing cost in addition to quality and rejection 
costs. Along these lines, Shin and Govindaluri [7] propose a closed-form solution for optimal tolerances 
that accounts for manufacturing cost as well.  
 
Despite the extensive work conducted in the area of tolerance optimization, the incorporation of 
customer preferences in this problem has often been overlooked.  In this paper, we propose a 
multicriteria optimization framework to integrate customer preferences into tolerance optimization. 
Unlike the majority of earlier models in the literature, the model proposed within this framework not 
only considers quality and costs but also incorporates customer satisfaction as an optimization criterion. 
An overview of the multicriteria framework is presented in the third section.  
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RESEARCH MOTIVATION 

 
As discussed in introduction, the majority of models consider a tradeoff between quality and costs by 
using a quality loss function to quantify effects of good or poor quality in monetary terms. Quality loss 
is a function of standard deviation and the costs incurred in repairing or replacing a defective product. 
Thus the tightness of a tolerance according to quality loss function based models in the literature is 
based on minimization of monetary measures: quality loss, rejection costs, and manufacturing cost. 
However, a decision based merely on a monetary criterion may not be the best decision. For example, 
the policy of minimizing quality loss and costs does not eliminate the possibility where a QC considered 
highly important by the customer is assigned a loose tolerance. Hence, it becomes necessary to find a 
systematic method to integrate customer preferences into tolerance optimization. The integration will 
ensure that QCs having a higher value of customer-perceived relative importance have a relatively 
tighter tolerance. Moreover, it also allows utilization of the customer preference information captured by 
expending much time and effort in the preliminary phases of design.  

 
OVERVIEW OF THE PROPOSED MULTICRITERIA FRAMEWORK 

 
The overall procedure involves developing mathematical models to establish relationships between 
tolerance or screening limits and expected total cost, E[T] (i.e., sum of expected rejection and 
manufacturing costs and expected quality loss) and between tolerance and customer satisfaction due to 
individual QCs. Customer satisfaction due to each QC is measured in terms of the expected deviation 
E[Di] from target value y0i for QCi discussed in the fourth section. Next, separate single objective 
optimization models are employed to determine the individual minima for each of the objectives E[T] 
and E[D1], E[D2], …, and E[Dn] in a nonsimultaneous fashion. Finally, a multicriteria optimization 
model is employed to determine the Pareto-optimal solution using a weighted-Tchebycheff norm that 
simultaneously minimizes expected total cost and maximizes customer satisfaction for all individual 
QCs. This method is superior to the simplistic weighted sum and goal programming approaches that 
may fail to explore the full set of Pareto points for a multiobjective optimization problem. Achieving the 
best compromise between the multiple criteria E[T], E[D1], E[D1], …, E[Dn] when determining Pareto-
optimal solutions requires tradeoff decisions among multiple objectives. For this reason, the 
determination of customer-perceived relative importance of QC1, QC2, …, QCn, and E[T] is included in 
the framework.     
 

MODELING OF COSTS AND QUALITY LOSS IN TERMS OF TOLERANCE 
 

In this section, the expressions for rejection costs, manufacturing cost, quality loss, and expected 
deviation in terms of screening limits are developed. 
 
Empirical Quality Loss Function 
 
When the historical data concerning costs associated with quality losses are available, an empirical 
relationship between the quality loss and the quality characteristic QCi represented by random variable yi 
can be developed using regression analysis. The linear regression form of the empirical loss function 
L(yi) for the QCi is given by [6][8][9] 
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where the bi’s are unknown parameters estimated using sample data. If f(yi) is the probability density 
function (p.d.f) for the random variable Yi, the expected loss under a 100% inspection scheme can be 
evaluated as [9] 
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Rejection Costs 
 
Suppose CSi is the scrap cost incurred when a product falls below the LSL, and CRi the rework cost when 
the product falls above the USL, then expected rejection cost E[R] incurred due to products that do not 
meet the screening limits is defined by 
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If Y is expressed in terms of iμ  and iσ  such that yi = μi + ziσi, then  
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where φ(•), Φ(•), and z denote the standard normal p.d.f, cumulative normal distribution, and standard 
normal random variate, respectively [9]. 
 
Manufacturing Cost 
 
Using the model suggested by Kim and Cho [8], the expected manufacturing cost E[M] is described by a 
polynomial model as follows: 
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where ti are tolerances and aj’s are coefficients of the polynomial function determined using regression 
analysis. The term ti can be defined in terms of δ1i, δ2i, μi and  σi as  
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Substituting ti = δ1iσ i + δ2iσi, in Equation (6), we get  
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Equation (7) defines the manufacturing cost in terms of δ1i and δ2i [9].   
 
Customer Satisfaction 
 
Customer satisfaction is high when lower expected deviation from target values is achieved for QCs 
having higher values of customer-perceived relative importance. According to Taguchi [2], the reduction 
in customer satisfaction is squarely proportional to the deviation from the target value of a QC. Letting 
y0i be the target value of QCi, the expected deviation can be given by  
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Substituting σμ zy +=  and letting φ(⋅) and Φ(⋅) denote standard and cumulative standard normal 
random variable  
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TOLERANCE OPTIMIZATION 

 
A tolerance optimization problem can be structured using the following general multiobjective 
optimization model:   

Minimize  E[T], E[D1], E[D1], …, and E[Dn] 
subject to 0≥g ,            (10) 

where E[T] is determined as follows: 
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The feasible decision space Ω is defined in terms of the screening limit vector 
{δ|δ= 21211211 ,,,,, nnii δδδδδδ LL } in the Euclidean space as Ω = {δ | δ ∈ Ru, 0≥g }, where g are real-
valued functions defined in Ω.  In addition, E= [E[T], E[D1], E[D1], …, E[Dn]] represents the image of δ 
in the objective space. In order to define utopian point consider the following n+1 single objective 
optimization models  

         Minimize E[Di] for i = 1, 2, …,  n 
         subject to      iii ba >> δ  and E[T] ≥ 0                     (11) 
         Minimize E[T]  
         subject to      iii ba >> δ  and E[Di] ≥ 0         (12) 

Let I
jδ be the solutions for the n models given by (10) and I

Tδ be the solution for (12). Also, E[Di]I be the 
minimum value obtained for E[Di]j on solving Equation (11) for each i=1, 2, … n and E[T]I be the 
minimum value obtained on solving Equation (12). The utopian point in the objective space is then 
given by EI = [E[D1]I, E[D2]I, …, E[Dn]I, E[T]I]. The pre-image of the utopian point, δI is called utopian 
solution and can often be infeasible because of the conflict between multiple objectives.  

 
MULTICRITERIA TOLERANCE OPTIMIZATION MODEL 

 
The optimization model given by Equation (10) seeks to determine δ within Ω that can attain closer 
proximity to the utopian point MSEI. Let δ* and E* denote the feasible solution and its image in the 
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objective space, respectively. In order to determine δ* where δ*∈ Ω, the principle of the Edgeworth 
Pareto-optimality can be employed [11]. That is, δ in Ω is considered a Pareto solution if and only if 
there does not exist some other δ ∈ Ω such that E < E*. A popular method to determine the Pareto set is 
the minimization of the distance of E from the utopian point EI, where the distance is expressed using 
weighted θ−norm defined in Equation (13). A Pareto solution δ* can then be determined by minimizing 
the distance dθ (wT) from the MSEI given by  
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where E[Di]max ( i =1, 2, …, n) is defined as the maximum value in the jth row of Table 1.  
 

TABLE 1. PAY-OFF MATRIX 
 

 E[D1] … E[Dn] E[DT] 
δ1

I IDEDE ][][ 111 =  … 1][ nDE  1][ TDE  
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Using the weighted θ−norm, multicriteria model can be written as  

Minimize dθ (w) 
subject to g ≥ 0.                          (14) 

Here, the vector w = [w1, w2, …,wn, wT] represents the customer-perceived relative importance of n+1 
objectives or criteria E[Di] and E[T]. The vector w can be determined by using a combination of entropy 
method and house of quality [10-12].Commonly-used weighted norms are weighted unity norm or d1(w), 
weighted quadratic norm or d2(w), and weighted Tchebycheff metric or d∞ (w), which is also referred to 
as weighted ∞−norm depending on whether θ  is 1, 2 or ∞. The compromise programming method based 
on the weighted ∞−norm is recommended by many researchers [13-16], since it reduces the 
computational burden and achieves lower deviations from MSEI. Further, the Tchebycheff metric based 
compromise programming method is therefore capable of exploring all non-dominated solutions to 
multicriteria problems irrespective of the convexity of a decision space. The denominator in Equation 
(12), ,)()(max xx I

jj MSEMSE −  is used to normalize the variability measures for the m QCs so that the 
measures take the values between 0 and 1. This normalization converts incommensurable measures into 
dimensionless indices so that the summation in the right-hand side of Equation (10) can be performed on 
a consistent basis. When θ = ∞, Equation (14) can be represented by the equivalent β−problem given by  

Minimize β 
subject to 
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 The well-known β−formulation given in Equation (15) is computationally less tedious than the 
formulation given in Equation (14).  
 

NUMERICAL EXAMPLE 
 
Consider a product with two QCs, QC1 and QC2. A market survey of customers using entropy method  
[10] determined the relative importance of the QC1, QC2, and E[T] as 02.5, 0.35, and 0.4 respectively. 
The empirical and manufacturing equations given by equations (1) and (5) were determined using least-
squares regression. Tables 2 and 3 show the solutions obtained for single objective optimization models 
and the corresponding values of the objective functions E[T], E[D1], and E[D2]. The maximum and 
utopian values of E[T], E[D1], and E[D2] are shown in Table 4. As seen in Table 4, the utopian point is  
[E[T]I, E[D1]I, E[D2]I] = [123.28, 0.1, 0.1]. When determining the Pareto solution the optimization 
minimizes the distance from the utopian point, where the distance is expressed by the weighted ∞-norm 
or the Tchebycheff weighted norm. The weights incorporated into the weighted norm relate to the 
customer perceived relative importance weights, w = [02.5, 0.35, 0.4].  The Pareto solution for weight 
vector [0.25, 0.35, 0.4] was found to be (0.53, 0.42, 0.89, 0.32). 
 

TABLE 2. UTOPIAN SOLUTIONS 
 

 

 
TABLE 3. PAY-OFF MATRIX 
 

 E[T] E[D1] E[D2] 
δ1

I = (0.962, 0.1, 1.133, 0.1) 123.28 4.99 5.6 
δ2

I = (0.292, 0.632, 1.133, 0.1) 157.95 0.1 5.6 
δT

I = (0.962, 0.1, 1.133, 0.1) 190.16 4.99 0.1 

 
TABLE 4. MAXIMUM AND UTOPIAN VALUES  

 
E[T]max 190.16 E[T]I 123.28 

E[D1]max 4.99 E[D1]I 0.1 

E[D2]max 5.6 E[D2]I 0.1 

 
 
 

δj
I ),,,( 22211211 δδδδ  

δ1
I  (0.962, 0.1, 1.133, 0.1) 

δ2
I (0.292, 0.632, 1.133, 0.1) 

δT
I (0.962, 0.1, 0.346, 0.675) 
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CONCLUSIONS 
 

The paper investigates the effect of customer preferences other than just monetary measures such as 
quality loss and rejection and manufacturing costs, on screening limit or tolerance decisions.  The model 
presented in this paper is one of the most comprehensive models presented and the direction of this 
research is in harmony with concurrent engineering that attempts to incorporate the voice of customer in 
all phases of design and manufacture. 

 
REFERENCES 

 
[1] Tang, K., 1988, Economic Design of Product Specifications for a Complete Inspection Plan,  

International Journal of Production Research, 26(2), 203-217. 
[2] Phadke, M.S., 1989, Quality Engineering Using Robust Design, Prentice Hall, New Jersey.  
[3] Tang, K. and Tang, J., 1989, Design of Product Specifications for Multi-Characteristic 

Inspection, Management Science, 35(6), 743-756.  
[4] Fathi, Y., 1990, Producer-Consumer Tolerances, Journal of Quality Technology, 22(2), 138-145. 
[5] Kapur, K.C. and Cho, B.R., 1996, Economic Design of the Specification Region for Multiple 

Quality Characteristics, IIE Transactions, 28(3), 237-248. 
[6] Phillips, M.D. and Cho, B.R., 2000, An Empirical Approach to Designing Product 

Specifications: A Case Study, Quality Engineering, 11(1), 91-100. 
[7] Shin, S.S., Govindaluri, S.M., and Cho, B. R., 2005, Integrating the Lambert W function to a 

Tolerance Optimization Problem, Quality Reliability Engineering International,  21(8) 
[8] Kim,Y.J. and Cho, B.R., 2000, The Use of Response Surface Designs in the Selection of 

Optimum Tolerance Allocation, Quality Engineering, 13(1), 35-42. 
[9] Govindaluri, S.M. and Cho, B.R., 2002, Designing cost-effective limits: An empirical approach, 

Proceedings of Industrial Engineering Research Conference, Orlando, Florida. 
[10] Hwang, C.L. and Yoon, K., 1981, Multiple Attribute Decision Making – Methods and 

Applications: A State-of-the Art Survey. Springer-Verlag, New York. 
[11] Wasserman, G., 1993, On How to Prioritize Design Requirements during the QFD Process IIE 

Transactions 25(3), 59-65. 
[12] Govindaluri, S.M. and Cho, B.R., 2005, Integration of customer and designer preferences in 

Robust Design, International Journal of Six Sigma and Competitive Advantage, 1(3), 276-294. 
[13] Das, I. and Dennis, J.E., 1997, A Closer Look at the Drawbacks of Minimizing Weighted Sums 

of Objectives for Pareto Set Generation in Multicriteria Optimization Problems. Structural 
Optimization, 14, 63-69. 

[14] Chen, W., Wiecek, M., and Zhang, J., 1999, Quality Utility – A Compromise Programming 
Approach to Robust Design,  ASME Journal of Mechanical Design 121(2): 179-187. 

[15] Dai, Z., Scott, M.J., and Mourelatos, Z.P., 2003, Robust Design Using Preference Aggregation 
Methods, Proceedings of ASME Design Engineering Technical Conference, ASME paper no. 
DETC/DAC-48715. 

[16] Sen P, Yang B-J (1998) Multiple Criteria Decision Support in Engineering Design. Springer, 
London. 

 

 

685


