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ABSTRACT 
 

We introduce a new mixed integer programming formulation for the two-group classification and 
discrimination problem that makes use of multiple separating hyperplanes. Our work constitutes an 
innovation in the area of support vector machines in the context of successive perfect separation 
decision trees, by constructing a discriminant function that approximates complex non-linear 
decision boundaries without the need for kernel transformations of the data.  Unlike piecewise-linear 
formulations, our model does not require that one of the groups belong to a convex region, making 
our formulation more effective for complex data sets.  We conduct a computational study using well 
known data sets in banking and in cancer detection that shows the merit of our model. 
 
 

INTRODUCTION 
 
Discrimination analysis is one of the key tools for classifying data in real world data mining, and finds 
important uses in settings that range from bioinformatics to healthcare, and from financial analysis to 
military planning (see [2], [7], [8], and [9]). Recent contributions have been provided by mathematical 
programming (MP) approaches based on piecewise-linear models that approximate non-linear 
boundaries, or on kernel transformations that attempt to render the data linearly separable. 
 
On one hand, piecewise-linear models make use of stringent requirements that constrain their ability to 
handle complex structures, and fail to scale up efficiently to large data sets.  For example, these models 
require that the elements of one of the two groups lie entirely in a convex region, so they must be solved 
twice: once to constrain all of Group 1 elements to a convex region, and once to do so for Group 2 
elements [3].  On the other hand, kernel-based methods like Support Vector Machines (SVM) as in [1] 
usually rely on a limited number of known kernel transformations to project the original data into very 
high-dimensional space in the hope of rendering it linearly separable. 
 
In this paper we present a mixed integer formulation that generates multiple hyperplanes simultaneously, 
thus forming a type of decision tree structure that does away with the convexity requirements in 
piecewise-linear models with significantly fewer variables and constraints. In addition, instead of relying 
on kernel transformations, our approach approximates a non-linear discriminant function that seeks to 
separate the original data directly. This affords access to the best of both worlds, for our approach can 
readily exploit a kernel transformation in a case where one is known to be relevant to the application at 
hand. 
 
 
 



  

  

THE CLASSIFICATION AND DISCRIMINATION PROBLEM 
 
Let aBijB denote the value of attributes of the elements in a data set, where each element i (i=1,…,m) is 
described by attribute j (j=1,…,n). We seek a decision rule to correctly identify whether a given vector 
ABi B=(aBi1B,…,a Bin B) should belong among the elements of Group 1 or among those of Group 2 (GB1 B and GB2 B, 
respectively). For instance, the elements ABi B may refer to credit applications we seek to correctly classify 
according to whether they involve “good” risk (i ∈ GB1 B) or “bad” risk (i ∈ GB2 B); the first component a Bi1 Bof 
ABi B may refer to the applicant’s age, the second component aBi2 Bmay refer to the applicant’s annual income, 
and so on.  Given the knowledge of the ABi B vectors and their group membership, we seek a decision rule 
that not only performs well in discriminating whether a particular one of those vectors belongs in Group 
1 or Group 2, but also whether a new vector A not among the original known vectors should belong in 
one group or the other. The decision rules we investigate are based on hyperplane separation 
approaches. Our design makes special use of a procedure called successive perfect separation that 
compels one of the two separating regions to contain all points of one of the groups at each branch. 
 

INTEGER PROGRAMMING MODELS FOR MULTIPLE SEPARATING HYPERPLANES 
 
As a first step toward introducing more advanced mixed integer models, we begin by examining a 
simple model to minimize the number of misclassified points by means of a single hyperplane. The 
following model denoted as Model 1 is due to Glover [5] and seeks to minimize the sum of the binary zBi B 
variables, and hence to minimize the number of misclassified points: 
 
 Minimize ∑

∈Gi
iz  (1.1) 

 Subject to: aBijBx Bj B – MzBi B ≤ b, i∈GB1B (1.2) 
  aBijBx Bj B + MzBi B ≥ b, i∈GB2B (1.3) 
  x Bj B, b unrestricted  (1.4) 
  z Bi B ∈ {0,1}, i∈G (1.5) 
   ∑ =

j
j Cx  (1.6) 

 
Note that (1.2) and (1.3) express the inequalities ABi Bx – Mz Bi B ≤ b (for elements of GB1 B) and ABi Bx + MzBi B ≥ b 
(for elements of GB2 B).  The constant M takes a large value to assure that the inequality will be redundant 
whenever zBi B= 1.  Equation (1.6) is called the “normalization” constraint, necessary to avoid a trivial 
solution where all xBj B = 0 and b = 0. 
 
The goal of classification and discrimination analysis approaches that involve constructing multiple 
hyperplanes is to approximate a non-linear boundary that accommodates more complex structures in the 
underlying data. In figure 1, we seek to separate the x-elements from the o-elements.  Figure 1.a shows a 
data set that is completely separable by a single linear boundary, while figure 1.b shows one where a set 
of two hyperplanes is necessary. 
 
Our approach, developed in the context of successive perfect separation (SPS) decision trees, achieves 
the same goals as piecewise-linear models (i.e. approximating non-linear boundaries to correctly 
discriminate complex data), but without the convexity requirement and using about half the number of 
attribute weight variables.  The multi-hyperplane model may be interpreted as identifying hyperplanes 
that are applied successively to generate a tree of conditional rules for separating the points, thus 



  

creating a formulation for the conditional hyperplane approach sketched in [4].  In order to explain our 
model, we start by defining a SPS tree. 
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Figure 1. Single and multiple separating hyperplanes 

 
Definition 1: Successive Perfect Separation. We call Successive Perfect Separation (SPS) a procedure 
by which at each depth 0 < d < D of a binary decision tree we compel all elements of either group 1 (G1) 
or group 2 (G2) to lie entirely on one side of the hyperplane. (At the final depth d = D we just perform a 
separation of the residual elements into their corresponding groups.) 
 
Definition 2: SPS Decision Tree.  A SPS decision tree is a decision tree that results from applying the 
SPS procedure to the classification problem. Thus, at each depth d (for 0 < d < D) the tree has one leaf 
node that terminates the branch that correctly classifies elements in a given group. At d = 0 the tree has 
a root node containing all the elements in the data set, and at d = D the tree has two leaf nodes 
corresponding to the final separation step.  Figure 2 illustrates the structure of a SPS tree. 
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Figure 2. One particular type of SPS tree for D = 3 

 
A SPS Decision Tree Model:  For a selected maximum depth d = D of the decision tree, we provide a 
model that implicitly considers each possible SPS tree type of depth d. The type of tree produced is 
determined by the position of its root nodes and leaf nodes. In the context of our model, a root node is 
considered a “problem” node where points from both groups need to be separated, while a leaf node is 
considered a “decision” node where points are classified into their particular group. Figure 2 shows one 
possible type of SPS tree for D = 3, and its corresponding classification rules. In figure 2.a, we seek to 
separate points represented as squares from points represented as circles.  The points are separated by 
three hyperplanes, denoted by h1, h2 and h3. The boundary PQRS (shown as heavier solid lines) is 
formed by segments PQ, QR and RS of the three original hyperplanes. As demonstrated by this example, 
it is not necessary for the boundary to form a convex region, which enhances the flexibility of our 
approach for accommodating complex data structures. For the type of tree depicted in figure 2.b, a circle 
will be correctly classified by the tree if it is either correctly classified by (i.e. lies on the correct side of) 
h1, or by both h2 and h3 (corresponding to the circular leaf nodes); conversely, a square will be correctly 
classified by the tree if it is correctly classified by both h1 and h2 or by both h1 and h3 (corresponding to 

  



  

  

the square leaf nodes). Our model, which we will call the Generalized Structure model, captures all 
possible SPS tree structures without having to explicitly identify and enumerate each one within the 
model framework. Instead, the Generalized Structure model automatically embraces all of the 2P

D
P 

structures in an implicit fashion. 
 
Let d denote the depth index 1, 2,…, D which identifies the total number of hyperplanes that will be 
generated. For each depth d we introduce variables x[d], z Bi B[d], and b[d] corresponding to the variables x, 
z Bi B and b in model 1 (where the maximum value of d was 1). We also have a continuous variable vBi B[d], 
whose value is forced to be 0 or 1 according to the value received by zBi B[d] and by another binary variable 
y[d]. This latter variable constitutes our successive perfect separation variable, and is defined as y[d] = 0 
if all i∈ GB1B are compelled to lie on one side of hyperplane d, y[d] = 1 if all i∈ GB2 B are compelled to lie on 
one side of hyperplane d. The variable y[d] is not included for the final hyperplane (the one associated 
with the maximum depth D), since we do not compel the points of either Group 1 or Group 2 to lie all 
on one side of the hyperplane. Similarly, the variables v Bi B[d] will not be included for this last value D. 
Then, at any given depth d except the final one, we write y[d] ≥ (zBi B[d]: i ∈ GB1 B) and (1 – y[d]) ≥ (zBi B[d]: i ∈ 
GB2 B) to compel the appropriate z Bi B[d] variables to be 0. The complete formulation of the Generalized 
Structure SPS model, which we denote as model 2 is as follows: 
 
  Minimize  ∑

∈Gi
i Dz ][   (2.1) 
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   y[d] ≥ z Bi B[d], i∈GB1B, d=1,…,D-1  (2.4) 
   1 – y[d] ≥ z Bi B[d], i∈GB2 B, d=1,…,D-1  (2.5) 
  v Bi B[d] ≤ y[d], i∈GB1B, d=1,…,D-1  (2.6) 
  v Bi B[d] ≤ 1 – y[d], i∈GB2 B, d=1,…,D-1 (2.7) 
  v Bi B[d] ≤ 1 – z Bi B[d], i∈G, d=1,...,D-1  (2.8) 

  ∑∑
= =

=
D

d

F

j
j Cdx

1 1

][ , “Normalization” (2.9) 

  x[d], b[d] unrestricted, d=1,…,D  (2.10) 
  z Bi B[d] ∈ {0,1}, d=1,…,D  (2.11) 
  y B i B[d] ∈ {0,1}, d=1,…,D-1  (2.12) 
  0 ≤ v B i B[d] ≤ 1, d=1,…,D-1  (2.13) 
 
Note that in this model we use ε as a parameter in the hyperplane constraints (2.2) and (2.3). 
 

EXPERIMENTATION AND RESULTS 
 

We tested our models on two widely studied benchmark sets: the Japanese Banks data from [8] and the 
Wisconsin Breast Cancer data from the UCI Machine Learning Repository, both consisting of data from 
real world applications. We specifically tested our approach against the piecewise-linear model of [3], 
which appears to provide the best competing results for these data sets, by using the Leave-One-Out 
(LOO) procedure.  

 



  

  

In order to eliminate large discrepancies in scale among the attribute values for the Japanese Banks, we 
standardized the data.  Tables 1 and 2 summarize our results for various values of parameter ε.  All tests 
were performed using CPLEX 10.0, on a Dell Dimension 8400 workstation equipped with a Pentium 4 
processor with 3.60 GHz speed and 1.0 GB RAM.  We used the parameter setting M = 100. 
 

Table 1. LOO Hit Rates and solution times (in seconds) for Japanese Banks 
Separation 

Zone (ε) 
Gen. Structure 

Model 2 
Piecewise-Linear 

Model 
Time 

Model 2 
Time  

P-L Model 
0.0005 84 86 7.5 126.9 
0.0010 88 86 8.5 126.6 
0.0100 88 85 165.2 113.6 
0.0200 90 85 120.5 142.2 
0.0300 88 81 117.4 168.1 
0.0400 89 85 186.3 414.4 
0.0450 90 90 101.0 506.2 

 
As table 1 shows, our model yields better testing accuracy in the majority of cases.  Furthermore, each 
LOO test takes on average 100.9 seconds by the Generalized Structure model. Our implementation of 
Glen’s piecewise-linear model takes an average of 228.3 seconds for each LOO test. We only ran the 
case where elements from GB2 B are required to be in the convex region (In [3], Glen shows that this 
performs better than the case where GB1 B elements lie in the convex region)TP

 
PT– otherwise, the time for the 

piecewise-linear LOO test would have been – at best – approximately double. 
 

The Wisconsin Breast Cancer data consists of 683 patients screened for breast cancer (we eliminated all 
cases with missing values), and 10 attributes per case.  Preliminary testing of our model showed that this 
data set is completely separable by three hyperplanes, so again we used D = 3.  However, due to its 
convexity requirement, the piecewise-linear model failed to separate the data completely with three 
piecewise-linear segments. As with the Japanese Banks, we ran various tests for different values of ε.  It 
should be noted that for these tests, given the size of the data set, we set a time limit in CPLEX of 120 
seconds per iteration.  We found that the trade-off between classification accuracy and the time to obtain 
an optimal solution by CPLEX strongly justifies the use of such a time limit.  Table 3 summarizes the 
results for experiments where ε = 0.00004, 0.00005 and 0.00006.  We ran experiments with values at 
different orders of magnitude for ε, but the results did not vary significantly compared to the ones 
reported here. 
 

Table 3. LOO Hit Rates for Breast Cancer Data 
ε Gen. Structure Piecewise-

Linear 
0.00004 92.8 84.6 
0.00005 94.2 84.6 
0.00006 91.5 84.6 

 
As table 3 shows, the Generalized Structure model outperforms the piecewise-linear model.  We ran the 
piecewise-linear model twice, alternating the convexity requirement between GB1B and GB2 B, and recorded 
the one that resulted in the best LOO classification performance. In terms of solution time, the 
Generalized Structure model is almost twice as fast as the piecewise-linear model, with an average time 
for each LOO test around 500 to 600 seconds. The average size of the .lp file generated by each model is 
intended as a proxy for the size and complexity of the MIP model.  Our model generated .lp files of 158 
kb on average, while for the piecewise-linear model the average .lp file size was 357 kb. 



  

 
A general characteristic of the models presented here is that the MIP can have many optimal solutions.  
In other words, in the case of data that is separable by trees of depth D, there can be an infinite number 
of sets of D hyperplanes that separate the data. Therefore, the quality of the classifier may depend on the 
algorithm of the particular solver being used, such as the rules governing its branch and bound 
procedure.  Furthermore, the order in which the variables (attributes) are presented to the solver may 
also influence the quality of the solution for classification purposes. Glover [6] addresses some of these 
issues by suggesting retrospective enhancement and robust separation strategies that make use of 
maximizing the minimum distance from critical points to the hyperplanes in order to find an optimal 
solution that will perform best when classifying holdout observations. 
 

CONCLUSIONS 
 

Our approach to the classification and discrimination analysis problem constitutes an innovation in the 
area of support vector machines that has broad application to problems of pressing importance in real 
world data mining.  The use of multiple linear separating hyperplanes makes it possible to separate the 
original data without relying on efforts to discover kernel transformations that seek to project the data 
into a higher dimensional space. In addition, our models make use of successive perfect separation 
conditions that create a special decision tree structure for classification purposes. 

 
For the data sets we tested, an analysis using the LOO approach demonstrates that our models compare 
quite favorably in accuracy to the previous best mixed integer multi-hyperplane (piecewise-linear) 
model in the literature, and not only operates under less restrictive assumptions but is significantly more 
efficient in terms of solution time. 
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