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ABSTRACT 
 
The current study seeks to build linear programming (LP) models for dealing with pattern classification 
problems.  The method uses LP to construct and train a higher order LP network.  We propose a 
sequential masking algorithm using different masking functions to classify patterns in data.  The study 
also compares the performance of LP models with neural network and decision tree classifiers.  
 

INTRODUCTION 
 
Pattern Classification 
 
Pattern classification has become useful for a company that competes for new customers and attempts to 
retain existing ones.  It allows companies to make decisions based on facts, rather than purely on 
management intuition.  It holds the key to squeezing the best value out of the huge repositories of 
information stored in a company data warehouse.  The process of separating patterns in data is called 
discriminant analysis.  The knowledge gained from discriminant analysis is used to classify patterns for 
new data.  Patterns in data can exist in many different ways.  Likewise, there are many different 
approaches and technologies in use in pattern classification.  The current study focuses on the use of 
linear programming (LP) as a classification tool. 
 
Decision Boundary and Masking in Pattern Classification 

 
The input to a pattern classifier is a set of N measurements, and the output is the classification.  The 
input may be represented by a vector x, x = <x1, x2, …, xN>, called the pattern vector.  We call Wx, the 
set of all possible values that the vector x may assume, the pattern space.  Let us suppose that there are 
K possible classes in the problem domain.  A classifier will divide Wx into K disjoint regions.  The class 
regions are separated from each other by a decision boundary which could be a linear or nonlinear 
function.  The pattern classification task is to create this decision boundary in the RN input space so that 
a new pattern can be classified in one of those classes. 

 
The parameters of the classifiers are estimated from a set of pattern samples with known classifications, 
x1, x2, ….. , xT.  This set is called the training set.  The classifier training approaches optimum 
performance as T becomes large. Conceptually, any classifier draws boundaries for each class region 
based on the information in the training set.  If a new sample pattern is within the boundary of a specific 
class, the pattern is assigned to the class.  The idea of drawing these decision boundaries around a class 
during the training phase is called covering or masking.  Any complex, non-convex region can be 
covered by a set of elementary convex forms of varying size, such as circles or ellipses in the two-
dimensional case and spheroids and ellipsoids in the N-dimensional case.   
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Mangasarian [3] discussed linear and nonlinear separation of data in detail.  Roy and Mukhopadhyay [5] 
used simple fixed quadratic functions for all classes. 

 
THE CURRENT STUDY 

 
The current study will use different combinations of quadratic and radial basis functions.  The study will 
also attempt to use different masking functions for different classes, as well as even within a class. The 
proposed study will also use pruning techniques to get smaller nets. 
 
LP Masking Algorithm for Pattern Classification 
 
Let S be the maximum number of mask refinement passes, and s be the pass counter.  K is the total 
number of classes and k denotes a class.  δ is the lower bound for the normalization constraint variable γ 
when it is positive and -δ is the upper bound for γ when it is negative.  r denotes the number of in-class 
patterns (i.e., those belonging to the class being masked) and t the number of out-of-class patterns (i.e., 
those belonging to classes other than the class being masked) in a mask.  A mask is considered to be 
“small” and pruned if the total number of patterns (r + t) is ≤ θ, where θ is a predefined tolerance.  In-
class patterns are said to be in a majority in a mask if r/(r + t) ≥ φ, where φ is a predefined tolerance 
(e.g., φ = 2/3 for a two-thirds majority requirement).  Ms is the cumulative number of patterns masked 
(all classes combined) up to pass s.  The relative change in total number of patterns masked from pass s 
to pass (s + 1) is denoted by ICS+1, where ICS+1 = 100 (MS+1 - MS)/MS.  If this relative change is small 
(ICS+1 ≤ Ψ, where Ψ is a predefined tolerance), the masking process is stopped.  NMS is the total number 
of masks over all classes in pass s.  λ is the error rate of the problem. 

 
The current study proposes to use different masking functions for different classes and/or in different 
passes.  The study will also use a set of different masking functions (Φ functions) for the same class 
within a pass and pick the one that generalizes the best.  The ordering of classes is determined by the 
analyst.  A pattern is never reclassified more than once in this algorithm. 
 

Step 1. Define a set of masking functions to be used. 
Step 2. Initialize pass counter:  s = 0. 
Step 3. Let s = s + 1.  If s > S, stop.  Else, NMs, = 0, Ms = 0. 
Step 4. Initialize class counter:  k = 0. 
Step 5. Let k = k + 1.  If k > K, go to Step 9.  Else, initialize the sets GC, GNC and GM for class k.  

GC consists of unmasked class k patterns, GNC consists of all other unmasked patterns, 
and GM consists of all patterns masked in pass s so far. 

Step 6. Set up and solve the LP (3)-(8) twice, once for γ > δ and again for  γ ≤- δ, to mask the 
remaining unmasked class k patterns. 

Step 7. If the generated mask is too small, r + t ≤ θ, or if class k patterns in the mask are not in a 
majority, r/(r + t) < φ, then ignore the mask and go to Step 5 to mask the next class.  
Otherwise, (a) select the mask with less “noise” for use, (b) reclassify non-class k 
patterns in the mask as class k patterns, but do not reclassify a pattern more than once, (c) 
remove the corresponding masked patterns from the sets GC and GNC, and (d) update Ms 
and NMs:  NMs = NMs + 1. 

Step 8. If all class k patterns have been masked, go to Step 5 to mask next class.  Otherwise, go 
to Step 6 for next class k mask. 
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Step 9. If the relative change in total number of patterns masked, ICS, is less than Ψ and if the 
total number of masks is unchanged, NMS = NMS-1, then stop.  Else, go to Step 3. 

 
Neural Network and Decision Tree Classifiers 
 
One of the popular methods for solving discriminant analysis problems from a prediction point of view 
is the multi-layered perceptron (MLP), one of the artificial neural network (NN) methods.  The most 
popular brain-like supervised learning algorithm for MLP is the back propagation (BP) algorithm [7].  
NN classifiers do not always generalize for many applications when used for classification unless the 
models are designed properly to fit the application phenomenon [6].  Another difficulty with the NN 
training algorithm is that in many cases the amount of training data required for convergence is large.  
For many practical applications, NN models must learn the mathematical function relating correct 
outputs to inputs with the desired degree of accuracy from a limited number of available data. 

 
There are many decision tree algorithms in the pattern recognition literature.  The most popular ones are 
classification and regression trees [1], chi-squared automatic interaction detection [2], and ID3 family of 
classification trees [4].  Limitations of decision tree algorithms have been listed [8].  One of the main 
problems of decision tree classifiers is over-fitting as the algorithm tries to draw decision boundaries 
surrounding each sample point with hyper-planes (decision boxes or tree leaves).  As a result, additional 
tree pruning algorithms are required to improve generalization performance. 
 
Model Validation and Results 
 
All the classification methods (LP, NN, decision trees) will be rigorously tested using a ten-fold cross-
validation procedure.  This study will first collect data from the well known UCI benchmark repository 
http://www.kernel-machines.org/ for classification problems.  The method will split data sets into ten-
fold validation for rigorous testing.  The performance of different types of classifiers, with variations on 
the test data sets, will be documented.  Post validation work will include recommendations for various 
classification problems.  Results of the study are to be reported at the time of the conference. 
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