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ABSTARCT

There are always risks exist at different stages in a software development project. Risks, if not managed properly, can impact all aspects of development. The objective of this paper is to introduce a new mathematical approach in risk management; from building a Bayesian Belief Network (BBN) which models five common risk factors in software development projects, to analyze their effects with occurrence and transition probabilities, and finally, find an optimal solution of the “Rework” impact on a typical development project using non-linear programming and algorithmic techniques. The results from the BBN model not only are with pinpoint accuracy, they are more reliable than human manual efforts, and they are also compatible to the results from other industry known tool like the MatLab optimization toolbox.  

INTRODUCTION

A survey on 8,380 software development projects by the Standish Group in 2003 revealed that 53 % of the projects were behind schedule, or delivered fewer features than originally specified. 52.7% of them overran their budget by 189% or more than their original estimates [3]. Most of the risk management tools used today in the software development and technology industry relies on past experiences and manual efforts; lacking scientific approaches especially in the risk analysis and impact evaluation areas. When combining valuable past experiences and mathematical modeling techniques, we can reach a higher level of accuracy, consistency and reliability. In the 2008 WDSI Annual Meeting in San Diego, the authors of this paper presented the new Bayesian Belief Network (BBN) model and reviewed in detail how the model uses the causal diagrams and probability theory to accurately analyze risks and calculate their impacts. This paper is a continued study of the BBN model presented in the 2008 WDSI, we propelled the model to the next level that the model now is able to find the minimum (or maximum) impact value when particular conditions on certain risk factors are met. 
CAUSAL DIAGRAMS -THE BUILDING BLOCK OF THE BAYESIAN BELIEF NETWORK (BBN) MODEL

Causal diagram is a graphical tool that defines the causal relationships between variables in a causal model. A typical causal diagram comprises of a set of variables (or nodes) within the scope of the model. Variables within a diagram are connected by an arrow representing their causal influences - the arrowhead delineates the direction of this causal relationshipthat [8].

When applying a casual diagram with its associated set of probabilities, the diagram can be viewed as having two portions: nodes and arcs, where the nodes represent uncertain variables and the arcs are the causal/relevance relationships between the variables (see figure 1 below). Influence between each node can be quantified as the probability distribution of each child conditional on its parent. It is a direct acyclic graph and each node contains a stage of the variables in a conditional probability table.  
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 Figure 1 A Bayesian Network shows that x is causally affect y. 

THE BAYESIAN BELIEF NETWORK (BBN) MODEL

Bayesian Belief Network is an extension of Bayes Probability Theorem, The BBN model uses the probabilities and the relationship between the two nodes in a causal diagram to evaluate the level of risk and calculate their impacts. The following graph shows the BBN model with 5 selected risk factors (User, Management, Technology, Resource, and Experience problem), their occurrence, and transition probability assigned in the model for risk analysis and impact calculations.
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Figure 2

Figure 2 above is a graphical view of the BBN model. It is the component that analyzes the 5 risk factors; User problem (x1), Management problem (x2), Technology problem (x3), Experience problem (x4), and Resource problem (x5) and calculates their “Rework” impact value. The model uses the occurrence probability of each risk factor (the main nodes) and the transition probability between each node to calculate the “Rework” impact value. The model also optimizes the cost function F0(x) by finding the combination of occurrence probability of the five risk factors that together the F0(x1,x2,x3,x4,x5) function will generate the minimum impact value. 

Function F0 is the cost function to calculate “Rework” impact value in the BBN model, it represents the chance of the impact that may happen in term of a probability value when the 5 risk factors (x1,x2,x3,x4,x5) each has a particular occurrence probability value: 

F0(x) = F1(x)*F2(x)*F3(x)*0.5+F1(x)*F2(x)*(1-F3(x))*0.5+                  

             F1(x)*(1–F2(x))*F3(x)*0.5+F1(x)*(1-F2(x))*(1-F3(x))*0.8+

             (1-F1(x))*F2(x)*F3(x)*0.5+(1-F1(x))*F2(x)*(1-F3(x))*0.7 +

             (1-F1(x))*(1-F2(x))*F3(x)*0.6+(1-F1(x))*(1-F2(x))*(1-F3(x))*0.5                                   (1)

Function F1(x), F2(x), F3(x), F5(x), F6(x) and F7(x) are Equality Constraint Functions, representing the value measurement of sub-level factors in each of the transition links toward the cost function F0(x) from the 5 source risk factors. 

Function F4(x), F11(x), F9(x), F8(x), F10(x) are the upper and lower boundaries of the 5 source risk factors. 

F1(x) = F4(x)*F5(x)*F6(x)*0.5+F4(x)*F5(x)*(1-F6(x))*0.5 +

             F4(x)*(1–F5(x))* F6(x)*0.5+F4(x)*(1-F5(x))*(1-F6(x))*0.7+

             (1-F4(x))*F5(x)*F6(x)*0.5+(1-F4(x))*F5(x)*(1-F6(x))*0.6 +

             (1-F4(x))*(1-F5(x))*F6(x)*0.7+(1-F4(x))*(1-F5(x))*(1-F6(x))*0.5                                  (2)

F2(x) = F7(x)*F8(x)*F9(x)*0.5+F7(x)*F8(x)*(1-F9(x))*0.5 +

             F7(x)*(1–F8(x))*F9(x)*0.5+F7(x)*(1-F8(x))*(1-F9(x))*0.8 +

             (1-F7(x))*F8(x)*F9(x)*0.5 +(1-F7(x))*F8(x)*(1-F9(x))*0.7 +

             (1-F7(x))*(1-F8(x))*F9(x)*0.7 +(1-F7(x))*(1-F8(x))*(1-F9(x))*0.5                                 (3)

F3(x) = F9(x)*0.7+(1-F9(x))*0.5                                                                                                     (4)

F7(x) = F10(x)*0.6+(1-F10(x))*0.5                                                                                                 (5) 

F5(x) = F4(x)*F6(x)*0.5+F4(x)*(1-F6(x))*0.6+(1-F4(x))*F6(x)*0.8+(1-F4(x))*(1-F6(x))*0.5   (6)  

F6(x) = F11(x)*0.6+(1-F11(x))*0.5                                                                                                 (7)

F4(x)   = x1    
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F11(x) = x2    
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F9(x)   = x3    
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F8(x)   = x4    
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F10(x) = x5    
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FINDING THE OPTIMAL SOLUTION FROM THE BBN MODEL USING ALGORITHMS

One of the common methods in finding the optimal solution (minimum or maximum) of a problem is to create an algorithm that computes the solution to a given degree of accuracy. An algorithm is an iterative process that generates a sequence of points according to a prescribed set of instructions, together with a termination criterion. Two widely use techniques for solving optimization problem are the Hill Climbing Algorithm and the Simulated Annealing Algorithm. Hill Climbing Algorithm finds the global minimum only in the convex spaces, most of time it will find a local minimum instead of a global minimum. Simulated Annealing Algorithm offers a way to overcome this huge drawback of Hill Climbing Algorithm but the price to pay is more computation times. [1] [5] [6] [7].

First, we have to select a probability distribution for generating random numbers (neighbor points add to the data pool) during the iteration of running our algorithm. In the above twelve equations (F0-F12), the five occurrence probability values (x1 - x5) of our non-linear BBN model are offset by its complement component value (1 - occurrence probability) in equations (1)-(7). This property is similar to a binomial distribution. Since the Dirichlet distribution is the conjugate prior of the multinomial distribution, the Beta distribution is the conjugate prior of the binomial distribution. In Bayesian statistics, they can be seen as the posterior distributions of the parameter p of a binomial distribution after observing α − 1 independent event with probability p and β − 1 event with probability 1 − p, if the prior distribution of p was uniform.

Because we are using two parameters distribution over a probability range (between 0 and 1), it is best to use a Beta distribution (a special Dirichlet Distribution with two parameters) for estimate the uncertainty. We created our algorithm by combining the random Hill Climbing algorithm and the Simulation Annealing algorithms with the Beta distribution random generated numbers:

Step 1: %Initial parameters setting

optimal = [0.35 0.58 0.46 0.625 0.3];  

min_F0 = 0.5606;  

T = 1;

%Initial data pool

x1 = [0.2*12  0.3*12  0.7*3  0.8*3];                     % set of 30 user problem data

x2 = [0.2*3  0.3*3  0.5*6  0.6*3  0.7*9  0.8*6];   % set of 30 management problem data 

x3 = [0.2*13  0.3*2  0.5*2  0.7*8  0.8*5];            % set of 30 technology problem data

x4 = [0.2*3  0.3*4  0.5*4  0.7*3  0.8*16];            % set of 30 experience problem data 

x5 = [0.2*10  0.3*16  0.5*3  0.7*1];                     % set of 30 resource problem data

% Estimate Beta distribution parameters by using Matlab Function BETAFIT

p1=betafit(x1);  p2=betafit(x2);  p3=betafit(x3);  p4=betafit(x4);  p5=betafit(x5);

Step 2:  %Start simulation by reduce temperature annealing.

while T > 0     

   for i = 1 : 1000     % Try 1000 iterations of steps 3 and 4.

Step 3:  %Get a neighbor point and calculate the impact value 

      % Generate a Beta distribution neighbor point by using MatLab Function: %BETARND for each of the 5 risk source factors.

      x(1) = betarnd(p1(1),p1(2)); x(2) = betarnd(p2(1),p2(2)); x(3) = betarnd(p3(1),p3(2));

      x(4) = betarnd(p4(1),p4(2)); x(5) = betarnd(p5(1),p5(2));

      % Calculate the new impact value for this neighbor point

          F0 is equation [3]

Step 4: %Check minimum impact, accept by probability formula even if it is a bigger value

      if (F0 <= min_F0)                    % Accept this new point if it has a less impact value

         min_F0 = F0;  

         optimal = [x(1) x(2) x(3) x(4) x(5)];

         % Add this new point to data pool and re-estimate new beta distribution parameters

         x1(length(x1)+1) = x(1); x2(length(x2)+1) = x(2); x3(length(x3)+1) = x(3);

         x4(length(x4)+1) = x(4); x5(length(x5)+1) = x(5);

         p1 = betafit(x1);p2 = betafit(x2);p3 = betafit(x3);p4 = betafit(x4);p5 = betafit(x5);

    else    % Accept new point by a probability value calculated by Boltzmann distribution.

          p = exp(-(min_F0)/T);  

          random_number = rand;

          if(random_number < p)

             % Add this new point to data pool, re-estimate new beta distribution parameters

             x1(length(x1)+1) = x(1); x2(length(x2)+1) = x(2); x3(length(x3)+1) = x(3);

             x4(length(x4)+1) = x(4); x5(length(x5)+1) = x(5);

             p1=betafit(x1);p2=betafit(x2);p3=betafit(x3);p4=betafit(x4);p5=betafit(x5);

        end 

    end

Step 5: %Reduce Temperature for Annealing.  

T = T - 0.05

Go To Step 2

Results: Optimal Solution of the BBN model found by our Algorithm -

After many iterations of running our algorithm, we obtained a minimum impact value of 0.5494 (i.e the calculated value of the Cost Function F0 in equation 1) when those 5 source risk factors were in the value of -

X = [x1 (User problem) = 0.0257
        x2 (Management problem) = 0.5824
        x3 (technology problem) = 0.9899 

        x4 (experience problem) = 0.1543

                       x5 (resource problem) = 0.2724]

VALIDATING THE BAYESIAN BELIEF NETWORK (BBN) MODEL’S OPTIMAL SOLUTIONS WITH MATLAB FUNCTION

To validate the optimal solutions found by the BBN model as described in the previous section, we used an industry known optimization tool called MatLab function. Using the FMINCON routine to find the minimum impact value for the same 5 risk factors with the following predefined options:

1. Medium Scale Minimization. 

2. Numerical Gradients calculated.

3. Finite Difference Approximation.

Result: Run the MatLab FMINCON function of the BBN model used the setting below-

             Initial point to start = [0.35, 0.58, 0.46, 0.625, 0.3];          

             Options = optimset('MediumScale','off');

 LowerBound = [0, 0, 0, 0, 0];  

 UpperBound = [1, 1, 1, 1, 1];

 FMINCON function returns the optimal solution of -

             Minimum impact value of 0.5497 (i.e the calculated value of the Cost Function

             F0 in equation 1) when those 5 source risk factors were in the value of -

 X = [x1 (User problem) = 0.2769
         x2 (Management problem) = 0.5721    

         x3 (Technology problem) = 0.9500
         x4 (Experience problem) =  0.0500    

         x5 (Resource problem) = 0.2478]

The minimum value of 0.5497 calculated by the Matlab tools is slightly higher than the minimum value of 0.5494 calculated by the BBN model. Our analysis also concludes that the difference between the two values is well with the acceptable margin.

RESULT ANALYSIS

Given the 5 risk factors and their occurrence and transition probabilities, the BBN model along with the built-in algorithms has found the minimal “Rework” impact value of 0.5494. The results show that even though risk factor x3 (Technology problem) is at a very high probability level of 0.98, we can still achieve the minimum “Rework” impact value. We can conclude that risk factor x3 is a lower priority item compared to the other 4 risk factors. The results also show that risk factor x1 (User problem) is at probability level of 0.02 and risk factor x4 (Experience problem) is at probability level of 0.15. The model suggests that they must be controlled at a lower level in order to achieve the minimum “Rework” value. Therefore, these two risks factors are higher priority items. With information like these, a project team can effectively allocate their valuable time and resources to manage various risk factors according to their priority minimizing their impacts to the project.
CONCLUSION
A successful software development project relies on many factors, and risk management is certainly one among the important ones. The BBN model and the mathematical methods described in this paper, if used properly, can become an integral part in project management. It can provide accurate risks/impacts information for various phases in a development project in advance. The project team can use the critical information and take appropriate actions to mitigate the risks and minimize their impact on the project; it will trade off a huge amount of project management time spending on the study of the project risk factors. As a result, the BBN model will significantly improve the process and reduce the manual effort and time in risk management. My goal in building the BBN model is similar and compatible to that of the COnstructive COst Model (COCOMO).  COCOMO is an algorithmic software cost estimation tool developed by Barry Boehm. It is currently being used quite commonly to estimate efforts, costs, and schedule for software development projects. We are confident that the BBN model and the mathematical methods described in this paper will pave a way to more advanced risk management study.
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