SOFTWARE DEVELOPMENT PRODUCTIVITY ATTRIBUTES:
AN EXPLORATORY STUDY

Abbas Heiat, Montana State University-Billings, College of Business, 1500 University Drive, Billings,
MT, USA, (406) 657-1627, aheiat@msubillings.edu

ABSTRACT

In this paper I used regression analysis and artificial neural network to predict productivity of the
software development. The results obtained by ANN were superior to that of regression analysis.
Clearly Multilayer Perceptron was an effective network in this case and efficiently predicted the
productivity in terms of independent variables. The results of experimentation with ANN clearly
indicated the nonlinear relationship between the productivity of software development and our
independent variables.

INTRODUCTION

Software development productivity is an important project management concern. One study reports
that a 20% improvement in software productivity will be worth $45 billion in the U.S and $90 billion
worldwide [1]. As a result, a number of empirical studies of software productivity have appeared in
the literature over the past three decades. Scacchi has published a report that examines empirical
investigations in relation to software development attributes, tools, techniques, or some combination
of these that have a significant impact on productivity of software production [2]. These studies focus
on the development of large scale software development. Twelve major software productivity
measurement studies are reviewed including those at IBM (Albrecht [3,4]), TRW (Boehm [1,5,6, 7]),
NASA (Bailey and Basili [8]), ITT (Vosburg et.al [9]) , and international projects (Lawrence [10],
Cusumano and Kemerer [11]). In addition, Scacchi examines a number of other theoretical and
empirical studies of programmer productivity, cost-benefit analysis, and estimation of software
cost(Thadhani [12] ,Lambert [13], Cerveny and Joseph[14]).

Based on his survey, Scacchi identifies a number of software productivity attributes:

. Computing resources and easy-to-access to support system specialists

. Contemporary software engineering tools and techniques

. System development aids for coordinating software projects

. Programming languages

. Software project Complexity. indicated by size of source code delivered, functional
coupling, and functional cohesion

. Reuse software that supports the information processing tasks required by the application
. Stable system requirements and specifications

. Small, well-organized project teams

. Experienced software development staff

However, Scacchi believes that it is not always possible or desirable to improve software productivity by
cultivating the entire project characteristics listed above.

Banker et.al, applying regression and data envelopment analysis to the data collected at large regional
bank conclude that significant factors improving productivity included project team capability and good
system response time. Factors that significantly but negatively affected productivity included lack of

Proceedings of 39th WDSI Conference 2010 -4311 -

team application experience and high project staff loading. The use of a new structured analysis and
design methodology also resulted in productivity in the short term [15].

PRODUCTIVITY MEASURE OF SOFTWARE DEVELOPMENT

In general, productivity is understood as a ratio of outputs produced to inputs used. However,
researchers may use different outputs and inputs for measuring productivity. IEEE Standard 1045
calculates productivity in terms of effort as an input and lines of code or function points as output [16].
The two most common methods for measuring complexity or size of a software development project are
Function Points and Lines of Code.

The main limitation of the LOC model is that it depends on the accuracy of an early estimate of lines of
code. This estimate is usually based on the past experience of the systems analyst. Certainly, most
organizations would find it difficult, if not impossible, to locate experienced analysts who could come
up with an accurate estimate of the system size using a LOC model [17]. A third problem with LOC
model is that it does not take into account the resources available to the systems development team.
These include among other things the types of language used in coding, software tools, the skills and
experiences of the team itself [18].

An alternative method for estimating systems development effort was developed by Albrecht [3].
Albrecht introduced the concept of Function Points (FP) to measure the functional requirements of a
proposed system. In FP modeling the size of the system is determined by first identifying the type of
each required function in terms of inputs, outputs, inquiries, internal files, and external interface files.
To calculate the value of function points for each category, the number of functions in each category is
multiplied by the appropriate complexity weight. The total systems effort is then calculated by
multiplying the sum of function points for all categories by the Technical Complexity Factor (TCF).
The TCF is determined by assigning values to 14 influencing project factors and totaling them. Readers
unfamiliar with the FP model are referred to Albrecht and Gaffney [4]. Albrecht argued that FP model
makes intuitive sense to users and it would be easier for project managers to estimate the required
systems effort based on either the user requirements specification or logical design specification [3].
Another advantage of the FP model is that it does not depend on a particular language. Therefore,
project managers using the FP model would avoid the difficulties involved in adjusting the LOC counts
for information systems developed in different languages. In this paper I have used the following
equation for calculation of productivity: Productivity = Effort/Function Points

METHODOLOGY

I used regression analysis and artificial neural network to predict productivity of the software
development in terms of variables explained in Data Acquisition and Pre-Processing section of this
paper.

In the last two decades, Artificial Neural Networks have been used for predictions in diverse
applications. In general, results have been superior to conventional methods [19]. In recent years, a
number of studies have used neural networks in various stages of software development. Hakkarainen et
al, estimated software size by training an ANN. They used structured specification descriptions as input
and Demarco Function Bang, Albrecht’s Function Points and Symon’s mark II Function Points size
metrics as output. The results of their study indicated that ANN could be used successfully to estimate
software size [20]. Srinivasan and Fisher compared two approaches 1) a back propagation neural
network and 2) Regression Trees, using Boehm’s historical database. Their experiments indicated that
neural network and regression trees are competitive with model-based approaches [21]. Finnie and
Wittig applied artificial neural networks (ANN) and case-based reasoning (CBR) to estimate software

Proceedings of 39th WDSI Conference 2010 -4312 -

development effort [22]. They used a data set from the Australian Software Metrics Association. ANN
was able to estimate software development effort within 25% of the actual effort in more than 75% of
the cases, and with a MAPE of less than 25%. Carolyn Mair et al, used 67 software projects derived
from a Canadian software house to evaluate prediction performances of regression, Rule Induction (RI),
CBR and ANN techniques [23]. The results of the study showed considerable variation between the 4
models. MAPE for RI ranged from 86% to140%. MAPE for regression ranged from 38% to 100%.
MAPE for CBR ranged from 43% to 80% and for ANN ranged from 21% to 66%. MAPE results
suggest that ANN seem to be the most accurate and RI is the least accurate technique [23]. Shukla
conducted a large number of simulation experiments using genetically trained neural networks. He used
a merged database comprising 63 projects, and Kemerer database comprising 15 projects. The results
indicated a significant estimation improvement over Quick Propagation Network and Regression Trees
approaches. Shukla concluded that there is still a need to apply neural networks to diverse projects with
wide range of attributes because it is “unclear which techniques are most valuable for a given problem.
..., experimental comparison using rigorous evaluation methods is necessary” [24].

The MultiLayer Perceptron (MLP) is one of the most widely implemented neural network topologies. In
terms of mapping abilities, the MLP is believed to be capable of approximating arbitrary functions. This
has been important in the study of nonlinear dynamics, and other function mapping problems. MLPs are
normally trained with the back propagation algorithm. Two important characteristics of the MultiLayer
Perceptron are:

1. Its smooth nonlinear Processing Elements (PEs). The logistic function and the hyperbolic tangent
are the most widely used. Their massive interconnectivity i.e. any element of a given layer feeds
all the elements of the next layer.

2. The Multilayer Perceptron is trained with error correction learning, which means that the desired
response for the system must be known. Back propagation computes the sensitivity of a cost
function with respect to each weight in the network, and updates each weight proportional to the
sensitivity.

The Radial Basis Function (RBF) network is a popular alternative to the MLP which can offer
advantages over the MLP in some applications. An RBF network can be easier to train than an MLP
network. The RBF network has a similar form to the MLP in that it is a multi-layer, feed-forward
network. However, unlike the MLP, the hidden units in the RBF are different from the units in the input
and output layers. They contain the Radial Basis Function, a statistical transformation based on a
Gaussian distribution from which the neural network's name is derived. Like MLP neural networks,
RBF networks are suited to applications such as pattern discrimination and classification, pattern
recognition, interpolation, prediction and forecasting. In the hidden layer of an RBF, each hidden unit
takes as its input all the outputs of the input layer xi. The hidden unit contains a basis function which has
the parameters centre and width. The centre of the basis function is a vector of numbers, ci, of the same
size as the inputs to the unit and there is normally a different centre for each unit in the neural network.
The first computation performed by the unit is to compute the radial distance, d, between the input
vector xi and the centre of the basis function, typically using Euclidean distance:

d=SORT (x' -V + - +.. " -"))

The unit output, g, is then computed by applying the basis function B to this distance divided by the
width w: a = B(%/,,)

The basis function is a curve, typically a Gaussian function, which has a peak at zero distance and which
falls to smaller values as the distance from the centre increases. As a result, the unit gives an output of
one when the input is centered but which reduces as the input becomes more distant from the centre. The
output layer of an RBF neural network is essentially the same as for the MLP. Normally it has a linear
activation function, making it possible to calculate the weights for those units directly. However, if the
output units have non-linear activation functions, then iterative training algorithms must be used [25].

Proceedings of 39th WDSI Conference 2010 -4313 -

DATA ACQUISITION

The data used in this research project was collected by The International Software Benchmarking
Standards Group (ISBSG). The group gathered information from 1238 software projects from around
the world. Projects cover a broad cross-section of the software industry. In general, they have a business
focus. The projects come from 20 different countries. Major contributors are the United States (27%),
Australia (25%), Canada (11%), United Kingdom (10%), Netherlands (7%), and France (7%). Major
organization types are insurance (19%), government (12%), banking (12%), business services (10%),
manufacturing (10%), communications (7%), and utilities (6%).

Projects types include enhancement projects (50%), new developments (46%), and 4% are re-
developments. Application types consist of Management Information Systems (38%),
transaction/production systems (36%), and Office Information Systems (5%). Nearly 3% are real-time
systems.

Over 70 programming languages are represented. 3GLs represent 57% of projects, 4GLs 37%, and
application generators 6%. Major languages are COBOL (18%), C/C++ (10%), Visual Basic (8%),
Cobol II (8%), SQL (8%), Natural (7%), Oracle (7%), PL/I (6%), Access (3%), and Telon (3%).
Platform for projects include mainframe projects (54%), midrange (24%), and microcomputers (22%).
Sixty-two (62%) of projects use a standard methodology that was developed in-house), 21% use a
purchased methodology. Only 12% do not follow a methodology. The use of CASE tools ranges from
21% of projects using upper CASE, down to 10% for integrated CASE tools. CASE tools of some type
are used in 51% of projects. Traditional system modelling techniques (data modelling, process
modelling, event modelling, business area modelling) are used in 66% of projects. They are the only
techniques listed in 27% of projects; 39% use a combination of traditional modelling and other
techniques. The most common single technique is data modelling, used in 59% of projects. RAD/JAD
techniques are used in 28% of projects. Object oriented techniques are used in 14% of projects.
Prototyping is used in 29% of projects.

Data in the ISBSG database had to be cleaned and pre-processed in order to get, relevant and complete
data for analysis. Records with missing value of attributes were excluded and the character values of text
attributes or variables were transformed to numeric values. Function points count, total work effort in
hours, team size, development platform (mainframe, mid-size, PC), language type (3GL, 4GL,
Application Generator etc.), whether a software development methodology was used, programming
language and development type (new, enhancement, etc.) attributes were considered for analysis.
Productivity attribute was calculated by dividing total work effort in hours by count of function points.
Once the data was pre-processed, 468 usable projects were available for analysis. The following Figure
represents a 3-D graph of data set used in this research.

DATA MODELING

As mentioned in section 2, Productivity which is calculated by dividing Effort by Function Points is
used as dependent variable in regression and artificial neural network model. Function Points, Team
Size, Development Platform, Language Type, Methodology, Development Type, Application Type, and
Programming Language are used as independent variables.

Regression analysis was performed by this author using Statistica, a powerful statistical and data mining
software. Equation is estimated by ordinary least square estimators using 468 observations. Regression
estimation results are summarized in Table 1 and 2. Overall, the regression results are poor, producing
relatively very low value of coefficient of determination (R?. The critical values for Durbin-Watson

Proceedings of 39th WDSI Conference 2010 -4314 -

(D.W.) test at 5% level of significance are only significant for Development Platform(5.57311),
Language Type(-2.98052), and Methodology(2.40586).

The regression results show an inverse relationship between productivity and function points, language
type and programming language. This indicates the smaller or less complex projects are more productive
and using fourth generational programming languages (4GLs) contribute more to productivity as
compared with 3GLs and 2GLs. Furthermore, using a systematic methodology and PC-based and mid-
range servers is positively correlated to productivity. In addition, the results demonstrate that a linear
model is not a good approach for analyzing the relationship between dependent and the independent
variables and we need to use a nonlinear model. However, in the absence of a specified nonlinear model
and a theoretical foundation for it, neural network may be an appropriate tool to study this relationship.

Table 1
Summary Statistics; DV: Productivity (Stan'|

Statistic Value
Multiple R 0.356360C
Multiple R? 0.126992
Adjusted R? 0.111777
F(8,459) 8.346083
p 0.00000C
Std.Err. of Estimate | 0.942456

Table 2

Beta Std Err B Std Err t p

Intercept 0.000000 0.043565 0.00000 1.000000

Function Points -0.053353 0.044621 -0.053353 0.044621 -1.19568 0.232438

Team Size 0.032032 0.044327 0.032032 0.044327 0.72264 0.470268

Development Platform 0.255579 0.045859 0.255579 0.045859 5.57311 0.000000

-0.137447 0.046115 -0.137447 0.046115 -2.98052 0.003030

Language Type

Methodology 0.107331 0.0446120.107331 0.044612 2.40586 0.016529
Development Type 0.055846 0.044948 0.055846 0.044948 1.24244 0.214708
Application Type 0.042246 0.045364 0.042246 0.045364 0.93128 0.352197

Programming Language -0.070772 0.046206 -0.070772 0.046206 -1.53165 0.126299

ARTIFICIAL NEURAL NETWORK

In Statistica , Automated Neural Networks(ANNs) is a comprehensive and extremely fast neural
network data analysis tool. It covers integrated pre- and post-processing, including data selection,

Proceedings of 39th WDSI Conference 2010 -4315 -

nominal-value encoding, scaling, normalization and missing value substitution, with interpretation for
classification, regression and time series problems. a unique wizard-style Intelligent Problem Solver can
walk you step-by-step through the procedure of creating a variety of different networks and choosing the
network with the best performance. ANNs supports and automatically selects the most important classes
of neural networks for the used data. These include

. Multilayer Perceptrons (Feedforward networks)
. Radial Basis Function networks

. Kohonen Self-Organizing Feature Maps

. Probabilistic (Bayesian) Neural Networks

. Generalized Regression Neural Networks

. Linear modeling.

Automated Neural Networks is used for this study. The size of error can be used to determine how well
the network output fits the desired output. The simulation runs terminates when the error drops below
the specified threshold. The specified threshold for experiments were set to 0.01 which means that the
simulations for finding the best network configuration would stop when average error or the difference
between actual effort and estimated effort for the training set drops below 1%.

The size of the training set is of fundamental importance to the practical usefulness of the network. If the
training patterns do not convey all the characteristics of the problem class, the mapping discovered
during training only applies to the training set. Thus the performance in the test set will be much worse
than the training set performance. Another aspect of proper training is related to the relation between
training set size and number of weights in the ANN. If the number of training examples is smaller than
the number of weights, one can expect that the network may "hard code" the solution, i.e. it may allocate
one weight to each training example. This will obviously produce poor generalization. Statistica
recommends that the number of training examples be at least double the number of network weights.
When there is a big discrepancy between the performance in the training set and test set, we can suspect
deficient learning. Note that one can always expect a drop in performance from the training set to the
test set. At our present stage of knowledge, establishing the size of a network is more efficiently done
through experimentation. The issue is the following: The number of PEs in the hidden layer is associated
with the mapping ability of the network. The larger the number, the more powerful the network is.
However, if one continues to increase the network size, there is a point where the generalization gets
worse. This is due to the fact that we may be over-fitting the training set, so when the network works
with patterns that it has never seen before the response is unpredictable. The problem is to find the
smallest number of degrees of freedom that achieves the required performance in the test set. One school
of thought recommends starting with small networks and increasing their size until the performance in
the test set is appropriate. Some researchers propose a method of growing neural topologies that ensures
a minimal number of weights, but the training can be fairly long. An alternate approach is to start with a
larger network, and remove some of the weights. There are a few techniques, such as weight decay, that
partially automate this idea. The weights are allowed to decay from iteration to iteration, so if'a weight is
small; its value will tend to zero and can be eliminated by the development life cycle. In this study I
started with one hidden layer and then increased the size of the network to two and three hidden layers.
The weight decay approach was used for all networks.

The results of using ANNSs to our data are summarized in Table 3. ANNs displays the best networks
with the least training error. In our case, the Radial Basis Function network has a test error of 2.06 while
Multilayer Perceptrons network has a test error of 0.001. Clearly Multilayer Perceptrons is a more
effective network in this case and predicts the productivity in terms of independent variables efficiently.
The results of experimentation with ANN clearly indicate the nonlinear relationship between the
productivity of software development and our independent variables.

Proceedings of 39th WDSI Conference 2010 -4316 -

Table 3

Summary of active networks (Standardized data.sta)

[Ind |Net. Training |Test |Training Training Error Hidden Output
Test error
ex |name perf. perf. |error algorithm function activation activation
] RBF 8- 0.4990 |4.639897E . .
1 45-1 0.012277 71 +37 RBFT SOS Gaussian Identity
] RBF 8- 0.4751 |6.215769E [1.032425E . .
2 551 -0.031253 94 136 +23 RBFT SOS Gaussian Identity
RBF 8- 0.4838 |8.893235E (5.681891E . .
3 551 -0.002569 51 +29 +15 RBFT SOS Gaussian Identity
RBF 8- 0.4730 |1.322352E (3.680124E . .
4 56-1 0.215150 80 426 o4 RBFT SOS Gaussian Identity
RBF 8- 0.4755 |2.339567E [4.969803E . .
5 60-1 -0.074636 70 135 +17 RBFT SOS Gaussian Identity
Summary of active networks (Standardized data.sta)
Ind |Net. Training |Test |Training Training Error Hidden Output
Test error
ex |name perf. perf. |error algorithm function activation activation
RBF 8- 0.4487 |1.195883E (2.555914E . .
6 47-1 0.113908 54 +16 14 RBFT SOS Gaussian Identity
MLP 8- 0.2644 |8.567703E- (9.972790E . e
7 9-1 0.416223 04 03 03 BFGS 14 SOS Exponential |Logistic
MLP 8- 0.2510 |8.769141E- [9.907189E . .
8 7.1 0.391854 15 03 03 BFGS 22 SOS Logistic Identity
MLP 8- 0.2684 |8.396658E- (9.985879E .
9 5.1 0.434150 84 03 03 BFGS 22 SOS Exponential |Tanh
10 IS\A{“P 8- 0.381583 (5)'225 13 3'3840906]3_ _9(')287633]3 BFGS 8 SOS Exponential |Tanh

A full set of references are available upon request.

Proceedings of 39th WDSI Conference 2010

- 4317 -

