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ABSTRACT 
 
A complex product such as a software document is often inspected more than once in a sequential 
manner to ensure the product’s quality. For each defect, the probability that it will be detected during 
each inspection cycle is usually assumed to be a known “constant”. However, in many practical 
situations, some defects are easily detected, while others are much more difficult to identify. In this 
paper, we propose a “beta-geometric” inspection model in which the heterogeneity in detection 
probability is described by a beta distribution.  In a numerical study, we show that our more realistic 
inspection model clearly outperforms traditional estimation methods that are based on the assumption of 
a constant detection probability. 
 

INTRODUCTION 
 
Although inspection is one of the important and effective tools that serve the task of assuring product 
quality, inspection error is inevitable in any inspection process. That is why some complex products are 
inspected multiple times in a sequential manner in order to improve the outgoing quality. 
As an example of the repetitive inspection, consider a software system that contains an unknown number 
N of faults.  The software system will be reviewed more than once in a sequential manner.  For each 
fault, the “detection probability” is p, which is the probability that the fault will be detected during the 
current review cycle.  After each review, the number of faults xi detected during the review cycle i is 
recorded, and those faults are removed or corrected prior to the next review. After a series of k 
independent reviews, we have a record x = {x1, x2, …, xk} of the number of faults detected and corrected 
during each review cycle. Based on the inspection results x = {x1, x2, …, xk}, we need to estimate the 
total number of faults N or, equivalently, the number of faults Rk ( =N- x1- x2- …-xk) still remaining in 
the software system. Such multiple inspection plans have attracted considerable attention recently with 
various names: repetitive testing [3] [6] [8] [7], sequential defect removal sampling [1], repeat 
inspection [4], repeated screening [5], or sequential review or inspection [9] [11]. 
The detection probability p of a fault is often assumed to be (i) a known constant that is given a priori or 
(ii) an unknown constant that ought to be estimated.  In many practical situations, however, each fault 
has a different probability of being detected; some faults can be found easily, while others are much 
more difficult to be detected. 
The purpose of this article is to propose an improved inspection model that considers the 
“heterogeneity” in detection probability p.  Specifically, we assume that the detection probability p is 
distributed as a beta distribution with parameters a and b.  By changing its beta parameters, we can 
describe a wide variety of distributions with different shapes and scales.  In a numerical analysis, we 
show that our “beta-geometric” model clearly outperforms traditional estimation methods such as (i) the 
maximum likelihood method and (ii) the conditional maximum likelihood method. 
 

METHOD OF MAXIMUM LIKELIHOOD 
 
At the beginning of the ith review, we still have N-si-1 faults remaining in the software document.  Then, 



the number of faults xi that will be discovered during the ith review follows a binomial distribution: 
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When the inspection results x={x1, x2,…, xk} are available after k reviews, the likelihood function of N 
and q is expressed as follows: 
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The maximum likelihood estimates (MLE) of N and q are the ones that maximize the likelihood function 
in (2).  However, the optimal values of N and q which maximize the likelihood function L(N, q) in (2) 
also maximize its log-likelihood function ln L(N, q).  Therefore, rather than maximizing the likelihood 
function itself, it is more convenient to maximize its natural logarithm: 
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Setting its first-order derivative equal to zero, we can derive the maximum likelihood estimator of q as 
follows: 
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By plugging q̂  in (4) into the log-likelihood function in (1), we can formulate the problem of finding the 
maximum likelihood estimate of N as a single-parameter maximization problem. 
 

CONDITIONAL MAXIMUM LIKELIHOOD ESTIMATOR 
 
The so-called “conditional maximum likelihood estimator” was originally proposed by [10], who used it 
to estimate the number of unknown trials in a multinomial probability distribution.  We modify the 
estimation method for the repetitive inspection model and compare its performance later with those of 
other estimation methods. 
After k review cycles, the inspection results are x={x1, x2,…, xk} and (N-sk) faults are still remaining in 
the software document.  Thus, the likelihood function of N and q is 

  ∏
∏ =

−−

=

−
−

=
k

i

xisNk
k

i
ik

ik qqq
xsN

NqNL
1

1

1

)]1([)(
!)!(

!),( . (5) 

We found that the likelihood function in (5) can be divided into two separate parts as follows: 
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The first part is the likelihood based on the probability of sk and the second part is the likelihood based 
on the conditional probability of x1, x2, …, and xk given sk.  Since the first likelihood function in (6) is a 
binomial distribution, the maximum likelihood estimate of N conditional upon q is simply shown to be 
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The second likelihood function in (6) is a multinomial distribution, which is independent of N.  Thus, the 
maximum likelihood estimator of q is the one that maximizes the likelihood function in (5) or, 
equivalently, its log-likelihood function: 
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From the first-order derivative of the log-likelihood function in (8), it can be easily shown that the 
maximum likelihood estimator q̂  is the solution to the following equation: 
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After finding q̂  that satisfied the equation in (9), we can easily obtain N̂  from (7). 
 

BETA-GEOMETRIC MODEL 
 
In the traditional estimation methods, the detection probability p (=1-q) is assumed to be an unknown 
constant.  To represent the heterogeneity in detection probabilities, we now assume that the probability p 
of being detected during each review cycle is distributed as a beta distribution with parameters a and b: 
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By changing the parameter values a and b in (10), we can represent a wide variety of variations in the 
detection probability p.  If a = b = 1, for example, the beta distribution represents the standard uniform 
(or rectangular) distribution with equal probabilities over the range (0, 1).  If a = 1 and b = 2 (or a = 2 
and b = 1), the beta distribution becomes a triangular distribution. 
For a certain fault in the product, the probability that the fault will be discovered and removed during the 
ith inspection cycle follows a geometric distribution with parameter p: 
  pppiP i 1)1(]|[ −−= .   (11) 
Likewise, the probability that it will not be found during the first k inspection cycles and will be still 
remaining in the product is 
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From (11) and (12), the probability that the fault will be successfully discovered during the ith review 
cycle is a beta-geometric distribution as follows: 
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Note that a gamma function in (13) has the following property: )()1( ccc Γ=+Γ  for any constant c.  
Thus, it can be further simplified as 
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From (12) and (14), the probability that a certain fault will still remain undetected after k inspection 
cycles is 
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The numbers of faults discovered during the k review cycles are x = {x1, x2,…, xk}, and the number of 
undetected faults still remaining in the software document is N-sk.  Thus, the likelihood function of N, a, 
and b is 
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PERFORMANCE EVALUATION 

 
Detection Probabilities 
 
In the simulation study in which we compare the performance of the beta-geometric model with those of 
traditional estimation methods, we assume that there are N=100 faults in a software document.  To 
represent the actual situation in which the probability p of being discovered is different from fault to 
fault, we consider four different cases: 
 

(a) Rectangular distribution with E[p]=1/2 
 
 1)( =pf    for 0 < p < 1 
 

(b) Triangular distribution with E[p]=1/2 
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(c) Triangular distribution with E[p]=1/3 

 
 )1(2)( ppf −=    for 0 < p < 1 
 

(d) Triangular distribution with E[p]=2/3 
 
 ppf 2)( =    for 0 < p < 1 
 
Parameter Estimation 
 
In the simulation study, we assume that each of the 100 faults in the software document is subject to 
review cycle up to k=10 times.  The exact detection time i of the fault with p follows a geometric 
distribution, and its cumulative distribution function is 1-(1-p)i, where i = 1, 2, …, 10.  Thus, with 
another standard uniform random number v from Microsoft Excel, we simulated the detection time i of 
the fault with p as the smallest integer larger than or equal to 
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Any faults with i larger than 10 have not been discovered during the k=10 review cycles. 
For N=100 faults in the software document, we then counted the number of faults that have been 



detected during the ith review cycle.  The inspection results are simply given by x = {x1, x2, …, x10} for 
one simulation run.  The beta-geometric model, along with other traditional estimation methods, is used 
to estimate the true parameter value N=100 for each simulation run.  When x = {44, 17, 8, 6, 4, 8, 0, 1, 
0, 1}, for example, the estimates of N obtained by the maximum likelihood method, conditional 
maximum likelihood method, and beta-geometric model are shown to be 89.00, 89.45, and 96.01, 
respectively. 
After 100 simulation runs, we then calculated the average estimate of N̂  and the mean absolute 
percentage error (MAPE) for each estimation method.  The performance measures are summarized in 
Table 1. 
 

Table 1. Estimates of N by three methods in four different cases 
(The true parameter value is N = 100.) 

 

Distribution of p Performance 
Measures 

Estimation Methods 

MLE Conditional MLE Beta-Geometric 

(A) Rectangular 
with E[p]=1/2 

Average N̂  89.679 89.959 99.702 

MAPE 10.321% 10.041% 4.187% 

(B) Triangular 
with E[p]=1/2 

Average N̂  97.180 97.386 99.848 

MAPE 2.820% 2.635% 2.048% 

(c) Triangular 
with E[p]=1/3 

Average N̂  83.999 84.723 99.756 

MAPE 16.001% 15.277% 6.867% 

(d) Triangular 
with E[p]=2/3 

Average N̂  98.300 98.315 100.095 

MAPE 1.700% 1.691% 1.600% 
 
Simulation Results 
 
As shown in Table 1, the conditional MLE is slightly better than the MLE in terms of the average 
estimate and the mean absolute percentage error.  However, the beta-geometric model clearly 
outperforms the traditional estimation methods in all four cases.  When the detection probabilities are 
uniformly distributed between 0 and 1, for example, both the MLE and the conditional MLE severely 
underestimate the true number of faults N as 89.679 and 89.959, respectively.  On the other hand, the 
average of the 100 estimates obtained by the beta-geometric model is 99.702, which is very close to the 
true parameter value N=100.  Its mean absolute percentage error is 4.187%, which is much better than 
those of the MLE and the conditional MLE. 
The traditional methods consistently underestimate the true number of faults when the detection 
probability is not a constant, but a random variable.  Only the beta-geometric model handles the 
heterogeneity in detection probability very well, giving almost unbiased estimates in all four cases. 
 

CONCLUDING REMARKS 
 
In many practical situations, the probability of being detected during each inspection cycle is not the 
same among different types of defect.  That is why we propose in the paper the beta-geometric 
inspection model in which the heterogeneity in detection probability is simply described as a beta 



distribution.  In a Monte Carlo simulation, we show that our inspection model clearly outperforms the 
maximum likelihood method and the conditional maximum likelihood method, predicting the total 
number of defects N with less biases and smaller variances. 
Those simulation results are not unexpected, given that the maximum likelihood method is a special case 
of our beta-geometric model.  The only drawback of the beta-geometric model is that we need to 
estimate three parameter values (a, b, and N), rather than two (p and N) as in the traditional methods.  As 
shown in the simulation study, however, the computational complexity is not a big problem even with 
Microsoft Excel.  Thus, in estimating the product quality after multiple inspections, there is no reason 
not to prefer our beta-geometric model over the traditional estimation methods. 
In the paper, we focused on the problem of estimating the number of defects (i.e., non-conformities) in a 
complex product such as a software document.  With slight modifications, our beta-geometric model can 
be applied directly to the problem of estimating the number of defective items (i.e., non-conforming 
items) in a batch of items such as IC chips [7].  In such a case, we need to estimate the average defective 
rate as well as the detection probability. 
Another possible extension is the Bayesian estimation of the number of defects in a repetitive inspection 
procedure [2].  In many practical situations, the prior knowledge we have on the number of defects N 
can be described as a negative binomial distribution.  Likewise, a beta distribution can be used as a prior 
distribution for the detection probability p.  With those prior distributions, we can derive a posterior 
distribution of the number of defects still remaining after k rounds of inspection. 
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