A DUAL-FACTOR MODEL FOR INVESTIGATING CRITICAL FACTORS INFLUENCING PHYSICIANS’ INTENTIONS TOWARD USING PHARMA CLOUD SYSTEM: AN INTEGRATION OF THE UNIFIED THEORY OF ACCEPTANCE AND USE OF TECHNOLOGY AND THREAT CONTROL PERSPECTIVE1

Rai-Fu Chen, Department of Information & Management, Chia Nan University of Pharmacy & Science, No.60, Sec. 1, Erren Rd., Rende Dist., Tainan City 71710, Taiwan (R.O.C.), rafuchen@gmail.com

ABSTRACT

To avoid duplicated medication and to improve medical safety and quality, Taiwan government has put much effort on promoting the use of PharmaCloud system. Physicians are the key providers and decision makers of medical services; thus, their intentions toward using PharmaCloud system are critical for the system evaluation and the further promotion of other governmental cloud-based healthcare information applications. This study aims for investigating the critical factors influencing physicians’ intentions toward PharmaCloud system based on a dual-factor model by incorporating the unified theory of acceptance and use of technology and the threat control perspective. In addition, the influence effects and processes of those factors were also investigated. The survey methodology will be conducted for the model validation by collecting data from physicians of the hospitals that had been certified to use the PharmaCloud system through the snowball sampling strategy. The collected data will be analyzed by partial least square statistical technique. Therefore, the obtained results will provide useful insights for understanding the critical factors affecting physicians’ intentions toward PharmaCloud system and the influencing effects and processes of those identified factors. Furthermore, the results are helpful for Taiwan government and healthcare industry to make appropriate strategies and incentives for improving the widespread use of PharmaCloud system.

Keywords: PharmaCloud System, Dual-factor Model, User Resistance, Perceived Threat, Critical Factors

---

1 This research was in part supported by the Ministry of Science and Technology of R.O.C., Taiwan under contract number MOST105-2410-H-041-002.