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ABSTRACT 

 

The “high volume, high velocity, and high variety information assets” or Big Data are finding their niche 

in decision-making process within the construction industry. Smart cities and internet of things, as two 

recent sensor-centric phenomena have been emerged to offer solutions for critical urban problems 

pertaining to energy efficiency, transportation planning, and risk mitigation. However, deployment of 

sensors, as the backbone of these innovative phenomena in design, planning, and construction of the smart 

cities’ infrastructure has yet to be investigated by researchers in academia and industry. Automated 

activity recognition of heavy construction equipment as well as human crews can contribute to correct and 

accurate measurement of a variety of construction and infrastructure project performance indicators. 

Productivity assessment through work sampling, safety and health monitoring using worker ergonomic 

analysis, and sustainability measurement through equipment activity cycle monitoring to eliminate 

ineffective and idle times thus reducing greenhouse gas emission (GHG), are some potential areas that 

can benefit from the integration of automated activity recognition and analysis techniques. In light of this, 

this paper describes the latest findings of ongoing research that aims to design and validate a ubiquitous 

smartphone-based automated activity recognition framework using built-in inertial sensors.  
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INTRODUCTION 

 

In the realm of the business process management, process mining as a relatively new research domain 

seeks to automatically discover a process model by observing activity records and extracting information. 

Process mining, in essence, requires substantial data analysis to discover trends and patterns. Thanks to 

the cost-effective, ubiquitous, and computationally powerful means of data collection and analysis, data-

informed process mining and decision making have become prevalent. In the present era of data analytics, 

industries leverage the power embedded in the abundant data generated rapidly to improve procedures 

and facilitate decision making. The architectural, engineering, construction, and facility management 

(AEC/FM) industry as well, begins to realize the benefits of data-driven approaches. In this paper, recent 

trends in leveraging the power of data through the use of machine learning techniques in the AEC/FM 

industry are presented. Additionally, the future potentials of similar applications are evaluated and 

discussed. 

 

LITERATURE REVIEW 

 

According to the United States Department of Commerce, construction and infrastructure projects 

comprise a trillion dollar industry with a continuous annual increase in pace [1]. Although there have been 

many efforts to increase the productivity of construction and infrastructure projects in recent years, the 

industry is still suffering from low productivity growth [2–5]. There are several key factors that can 

influence productivity in construction and infrastructure industry, including the uncertain, dynamic, and 
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transient nature of most construction projects. As infrastructure projects increasingly become larger and 

more complex in nature, traditional manual quantitative analysis methods mostly fail to effectively and 

accurately capture key project productivity performance indicators [6]. The basic concepts and existing 

techniques of multimodal data acquisition and fusion have been investigated in several research studies 

thst aimed at introducing solutions to specific problems within construction engineering. For example, [7] 

explored developing an experience database to fuse payload, temperature, and cycle-time data for the load 

activity in an earthmoving operation. In another study, as-design spatial information was fused with as-is 

laser scanner spatial data to detect construction defects [8]. Researchers also worked with positional data 

from global positioning system (GPS) and radio frequency identification (RFID) to estimate the 

coordinates of construction equipment and inventory items [9]. More recently, spatial (e.g., soil type) and 

temporal (e.g., weather) data were fused to support construction productivity monitoring [10].  

 

Considering the dynamic and complex environment of most construction project sites, being able to 

control and measure the efficiency of construction resources is vital to the overall performance of the 

project in terms of time and financial resources. Moreover, by monitoring workers and equipment 

activities, catastrophes that include safety and health issues as well as many lawsuits could be prevented. 

[11] used ultra-wide band (UWB) and Physiological Status Monitors (PSMs) for productivity assessment. 

However, the LoD in recognizing the activities was limited to identification of traveling, working, and 

idling states of workers and could not provide further insight into identified activities. In another set of 

research studies aiming at construction equipment activity analysis to support process visualization, 

remote monitoring and planning, queueing analysis, and knowledge-based simulation input modeling, the 

authors developed a framework by fusing data from ultra-wide band (UWB), payload, and orientation 

(angle) sensors to build a spatio-temporal taxonomy-based reasoning scheme for activity classification in 

heavy construction [12, 13, 14]. Sensor data can be used to train machine learning algorithms for 

classification and prediction problems. Example of such sensors that can be used for recognizing activities 

of construction resources such as workers or equipment are accelerometers and gyroscopes. Researchers 

have evaluated applications that include activity analysis of workers [15], safety of ironworkers [16], and 

equipment activity recognition [17]. In this paper, three main application areas of sensors-based systems 

that leverage machine learning power for process mining and activity recognition are discussed.   

 

Construction Safety 

 

Construction companies pay a substantial amount of money for expenses directly or indirectly related to 

their workers’ injuries. Records from National Academy of Social Insurance (NASI) show that in 2013 

employer costs for workers’ compensation were $88.5 billion for 129.6 million covered workers [18]. 

Previous research indicates that construction labors have the highest rate of Work-related Musculoskeletal 

Disorders (WMSDs) among all industries [19]. One way to prevent WMSD injuries is to use wearable 

sensors to detect unsafe activities. A team of researchers used EMG-based model to evaluate muscle force 

that affects spinal and lumbar [20]. Other studies used both accelerometer and gyroscope data from 

worker’s motions and construction equipment to auto-recognize and categorize construction tasks through 

activity recognition [21, 22]. Such used supervised machine learning algorithms to train computers for 

classifying unseen activities (i.e. those not presented in the training phase). In other words, the computer 

should understand the nature of the activity and its category through the collected and labeled data to be 

able to prepare them for an assessment of the safety level of the activity. Inertial Measurement Unit (IMU) 

sensors as one of the most accurate activity recognition tools have helped researchers to collect and 

transfer data from any moving subjects [23]. The data from these type of sensors can translate into a host 

of information that can help more thorough analysis of the activity. 



 

 

 

Construction Productivity 

 

It is almost impossible to make a universal definition of construction productivity mainly because each 

company has its own definition and guidelines for productivity according to its unique project control 

system [24, 25]. The heterogeneity of inputs and outputs make it very difficult to establish a fixed 

definition for productivity in construction. Nevertheless, factoring in the time and measuring productions 

over time makes it easier to compare productivity and determine its growth or decline [26]. Among other 

techniques that have been previously employed for activity recognition of workers in construction 

environment is vision-based systems. Wireless video cameras, Microsoft Kinect, and 3D range image 

cameras are some of the technologies that researchers used to monitor and detect specific activities [27, 

28]. Specifically for the purpose of productivity analysis, [29] developed a video interpretation model to 

automatically interpret videos of construction operations into productivity information. However, 

requiring multiple cameras or vision sensors, having short operational range, and the need for a direct line 

of sight are among the challenges one encounters when implementing such systems. Another school of 

thought in data collection for activity recognition in construction is using microelectromechanical sensors 

(i.e. MEMS). 

 

Sustainable Construction 

 

According to the Environmental Protection Agency (EPA), construction industry is ranked third just 

behind the “oil and gas” and the “chemical manufacturing” sectors in terms of contributing to greenhouse 

gas (GHG) emission [30]. Extensive use of energy-intensive equipment, in particular, produces high levels 

of emission. EPA states that if diesel fuel consumption reduces by only 10%, CO2 emission will decrease 

by 14.8 million pounds or approximately 5% of the entire energy consumption in the construction sector 

[31]. [32] developed a model for construction equipment emission rates in which various modes of 

equipment duty cycles including the idle mode accounted for different fuel use and emission rates. In 

another study, equipment activity durations and idle time were extracted to update a data-driven simulation 

model in real time [33]. [34] used vibration signal analysis to monitor the operational status of construction 

equipment involved in different activity modes (working or idling). Although all such work highlighted 

the role of idling as one of the duty cycle modes of construction equipment that contributes to the overall 

equipment emission in a non-productive manner, none of the previous work in this area investigated the 

prospect of detecting idling instances to provide solutions for idling and emission reduction. 

 

METHODOLOGY AND RESULTS 

 

IMU data can be collected using smartphones. In this section, three similar frameworks that use 

smartphone IMU sensors to detect activities are presented. Each framework serves a different purpose and 

application area within the construction engineering and management domain.  

 

Construction Safety 

 

Data collection phase of this study was conducted in an engineering research lab (i.e. a controlled 

environment). All the experiments were videotaped to assist in labeling and cross-referencing the collected 

data and performed activities. A 25 years old male Construction Management graduate student (i.e. the 

simulated worker) conducted the experiments who provided written informed consent to participate in the 

study. BTE Simulator II used to simulate construction physical activities includes a series of 21 



 

 

attachments that can be mounted on its exercise head in multiple positions to facilitate simulation of 

several activities and movement combinations. The simulator can be connected to a computer that allows 

selection of the desired resistance and measures performance by quantifying the force exerted, work done, 

and power output while the task is being performed. Figure 1 shows a snapshot of the actual experiment 

as well as the experimental design of the developed methodology. 

 

A total number of 10 experiments were conducted each of which with a relatively fixed level of power 

consumed as reported by the BTE Simulator II. Each experiment lasted for around 20 seconds. An 

approximation of the net force (F) exerted was achieved using Equation (1) 
                

      
d
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        (1) 

   

in which F is the net force exerted in Newton (kg.m/s2), P is the power displayed by the BTE Simulator II 

in Watt (kg.m2/s3), “t” is the duration of the experiment in seconds, and “d” is the displacement of the 

simulated worker’s arm in meter. For example, using Equation 1, for a measured power level of 2.5 Watt 

in one experiment that lasted for 20 seconds with a measured distance of 1 Meter, the force is calculated 

as 50 Newton.  

 

A smartphone was affixed to the simulated worker’s arm with a sports armband to capture acceleration 

data in three dimensions using its IMU sensors. Sensor Log smartphone application was employed which 

is a commercially available smartphone app for iOS and Android operating systems. This application 

reports a variety of signals including Acceleration, Gyroscope data, Core Location, Device Motion, 

Decibels, Pedometer Data, and Pressure from different sensors of the smartphone. The data collection 

frequency was set at 35 Hz using the Sensor Log application interface. This ensures collecting enough 

data for model training as well as capturing all the body movements. The recorded data from this 

application was extracted in Comma Separated values (CSV) format. Before analyzing the collected data, 

a data preparation step is required to assure data quality and cleanliness. Toward this goal, the raw data 

were plotted in Microsoft Excel and cross-referenced against the recorded video. Outliers and redundant 

data points captured during the transition periods between the experiments were removed. Finally, the 

prepared data was imported to Python software for the analysis stage.  

Figure 1: Experimental design of the developed methodology. 



 

 

 

Artificial Neural Network (ANN) was employed in this study to develop a model trained by the 

acceleration data as the input and measured forces as the output. The ultimate goal is to prepare a model 

capable of predicting unseen force levels using acceleration data provided to it. ANN is a machine learning 

method which works similar to the way brain neurons process information and develops relationships for 

classification and prediction purposes. The hidden layers of an ANN network collect the input and process 

them to generate the output [35, 36]. 

 

A total of 10 experiments were conducted with different power (force) values. Approximately 66% of the 

data was used to train the ANN model. The ANN structure included two hidden layers to make the 

connection between the input layer (i.e. acceleration data) and the output layer (i.e. net forces). Gradient 

decent was used as the optimization algorithm within the ANN model training using a feedforward 

backpropagation method. 

 

ANN model training and testing was performed in Python and training and testing results were recorded. 

In ANN training, the weights of the parameters in the cost function need to be updated and this updating 

process has to happen more than once since gradient decent is an iterative process. When the dataset is 

passed through the neural network it is called one epoch.  

 

The result of the model training and testing is shown in Figure 2. After around 2 epochs, an accuracy of 

slightly higher than 87% was achieved. As the number of epochs increased, the accuracy converged to 

around 87.5%.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Construction Productivity 

 

As stated before, there is no common definition for construction productivity that is acceptable and 

approved by the industry and academia. What is used frequently though is the ratio of production output 

over the input. However, it is very difficult to define the input and output because they are always 

dependent on the scope of the measure and availability of data [37, 38]. Labor productivity, however, is 

one of the most reliable and frequently used metrics for evaluating project productivity, according to the 

Figure 2: Results extracted from python for ANN. 



 

 

Construction Industry Institute (CII) and the Organization for Economic Co-operation and Development 

(OECD) [39, 40]. This method of calculating productivity is formulated in equation 1.   

𝐿𝑎𝑏𝑜𝑟 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑈𝑛𝑖𝑡 𝑜𝑓 𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝑂𝑢𝑡𝑝𝑢𝑡

𝑊𝑜𝑟𝑘 𝐻𝑜𝑢𝑟𝑠
                       (2) 

 

In this research, an automated methodology is introduced, implemented, and verified that uses activity 

recognition to assist in concrete understanding of how time is spent by various workers. Different 

components of this framework are depicted in Figure 3. As shown in Figure 3, accelerometer and 

gyroscope sensors of smartphone are used to collect raw data. This data is collected in three dimensions 

so that a fixed orientation for the smartphone during data collection would not be mandated. The 

accelerometer sensor measures the acceleration of the device while gyroscope measures its angular 

velocity. When the mobile device is attached to a human body involved in different activities, these two 

sensors generate different and unique patterns of signal. 

 

 
Figure 3: Components of the developed framework 

The collected data should go through a series of data preprocessing steps to be prepared for the next 

phases. For example, there might be some missing data points that if not handled properly, could cause 

data synchronization between the two sensors to be erroneous. Also, accelerometer sensors are sometimes 

characterized by a drift in their data collection process and this is another reason why preparation of the 

data to account for such drifts is recommended. After data are pre-processed, they should be segmented 

into windows with certain size (i.e. number of data points) to prepare data for feature extraction. The 

frequency of100 Hz for both accelerometer and gyroscope was used in the research experiments. Also, 

windows of 128 data points were segmented and 50% overlap between windows were considered. 

Features that are used in this research are of two types, statistical time-domain, and frequency domain. In 

order to obtain the frequency-domain features, the fast Fourier transform (FFT) procedure is applied on 

the time-domain features. Once the features are extracted, each time window will be associated with a 

label that characterizes an instance of an activity. This process is facilitated by mapping the activity labels 

to the recorded video of the activities performed during data collection. The extracted features associated 

which each time window and their corresponding labels will then be used to train a supervised machine 

learning algorithm. Previous research conducted by the authors showed that artificial neural network 

(ANN) and k-nearest neighbor (KNN) result in successful activity recognition [15]. Therefore, both 

algorithms are trained with the collected data in this research and an ensemble of them is used. Bootstrap 

aggregation or Bagging is the ensemble algorithm used in this research. Using this algorithm, T training 



 

 

data subsets each containing m training examples are selected randomly with replacement from the 

original training set of m examples. The classification result of the ensemble is determined through 

plurality voting [41]. Here, the number of training dataset is T = 20. 

In order to implement the developed framework, several experiments were designed and conducted. Data 

was collected from human subjects simulating typical activities performed in construction jobsites. These 

activities included sawing, hammering, turning a wrench, loading sections into wheelbarrows, pushing 

loaded wheelbarrows, dumping sections from wheelbarrows, and returning with empty wheelbarrows. 

Activities were performed in 3 different categories. The first category included only one activity; sawing. 

In this case, the goal of activity recognition was to differentiate between the time workers were sawing 

and the time they were not sawing (i.e. they were idle). The second category included hammering and 

turning a wrench as it was observed that this two activities produce similar movements on the upper arm, 

where smartphones were worn by workers for data collection. Finally, the third category included a 

number of activities with different levels of vibration produced on a worker’s body. These activities 

included loading sections into a wheelbarrow, pushing a loaded wheelbarrow, dumping sections from a 

wheelbarrow, and returning with an empty wheelbarrow. Figure 4 shows some snapshots of the 

experiments.  

 

 

 

 

 

 

The accuracy of activity recognition for this category was 99.28%. The mean of the discovered activity 

duration for 30 instances of sawing was 27.97 seconds while the ground truth obtained from the recorded 

video of the experiment was 27.95 seconds. Moreover, discovered activity durations showed that the 

worker was sawing 69.79% of the total time of the experiment and was idle in the remaining time. The 

ground truth for this category was 69.72%. In Category 2, the accuracy of activity recognition was 92.97% 

which is less than the result achieved in the first category. This is primarily because the number of 

activities increased, and the two activities were producing similar movements of the arm. Nevertheless, 

~7% error is still considered a reliable result considering the complex nature of such activities. Category 

3 included activities such as loading sections into a wheelbarrow, pushing a loaded wheelbarrow, dumping 

sections from a wheelbarrow, and returning with an empty wheelbarrow. The accuracy achieved in this 

case for activity recognition was 90.09%. The most important reason for achieving an accuracy less than 

the other two categories is the increased number of activities. However, again the error is less than 10% 

which is very promising for productivity assessment purposes. Table 1 and 2 present the results for 

categories 2 and 3. 

 

Sustainable Construction 

 

Recent research has made significant progress in developing activity recognition frameworks using 

machine learning algorithms. More recently, deep learning neural network models have made such 

frameworks even more accurate. Data is collected from real-world activities performed by construction 

Figure 4: Worker performing activities in 3 categories with data collection device (i.e. smartphones) 

affixed on their arms 



 

 

equipment such as excavators and loaders. The goal of this project is to use sensor data and machine 

learning methods to evaluate the fuel use and greenhouse gas (GHG) emission of construction equipment. 

 

Table 1. Activity analysis result in terms of the mean of activity durations in category 2 

Activity Discovered Duration (s) Ground Truth Duration (s) 

Hammering 17.59 17.05 

Turning the Wrench 13.44 13.39 

Table 2. Activity analysis result in terms of the mean of activity durations in category 3 

 

Activity Discovered Duration (s) Ground Truth Duration (s) 

Loading 9.24 8.96 

Pushing 14.14 14.02 

Unloading 13.53 13.18 

Returning 11.39 11.33 

 

The data is used to train and evaluate the performance of deep feed-forward networks (DNN) and 

recurrent networks that rely on Long Short-Term Memory cells (LSTMs). The preliminary results 

indicate the superiority of recurrent networks in terms of accuracy, precision, and recall. The long-term 

objective of this project is to enable accurate prediction of activities for equipment emission estimation.  

Different discrete even simulation (DES) models are developed to simulate heavy civil construction 

operations such as grading, compacting, material delivery, and earthmoving. Additionally, a novel 

framework based on the equipment activity cycle is proposed to predict emission. The emission output 

is then compared to Environmental Protection Agency (EPA)’s NONROAD model, the California Air 

Resources Board’s (CARB) OFFROAD model, and a modal model proposed in the literature. Results 

indicate that the developed framework in this research provides more accurate emission estimation 

compared to all the three models. Figure 5 shows the overall framework. Detailed results of this part of 

the research will be presented in the WDSI 2019 conference.  

 

 

Figure 5: Sustainable construction (i.e. equipment emission estimation) framework  
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