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ABSTRACT 
 

To combat the rising fulfillment cost of online grocery, this paper investigates the benefits of 
receiving online orders from customers and taking advantage of the time difference between order 
placement and order fulfillment to optimize stock levels. We describe methods to quantify the 
value of demand information and compare the benefits to the marginal labor cost of fulfilling 
online orders. Our numerical illustration shows the crucial role of the amount of short-life items 
in cart, item pick rate, and in-store fulfillment setup. 

  

INTRODUCTION 

The grocery retailing industry has undergone dramatic changes in recent years. Due to unforeseen 
circumstances, customer demand for online grocery services had accelerated faster than even the 
more optimistic, pre-pandemic estimates. According to one survey of internet users in the United 
States, the number of participants that have made at least one online grocery order in the past 
calendar year has risen from 33.8% (2019) to 47.8% (2020), and online grocery sales increased 
from $62.2 to $95.8 in the same period [1].  
This development has led to higher fulfillment operation expenses for grocers. In order to provide 
omnichannel services, such as click-and-collect (or buy online, pickup in-store), the retailer incurs 
additional costs from order picking and fulfillment handing of the online orders. For a 25-items 
order, the marginal increase in fulfillment cost can range from $10.25 per pickup order to $17.75 
per delivery order [2]; though these figures are likely to differ across geographical regions and 
customer demographics. 
Some chains choose to pass on the last-mile portion of the fulfillment cost to customers in the form 
of a delivery fee. However, most stores today offer pickup services free of charge. This means that 
the incremental expenses associated with pickup orders are currently being absorbed by retailers. 
While cost is not the immediate concern as we progress in overcoming the pandemic, it will be 
important again once these services become convenience features rather than necessities. A portion 
of consumers that have acclimated to the process of online grocery could later do so on occasions, 
and those that have adopted buying groceries online into their lifestyles may continue that routine. 
One advantage that online ordering brings, though, is access to advance demand information 
(ADI). In earlier research, Siawsolit & Gaukler (2019) identify that if online orders are placed with 
a demand lead time duration that is greater than the supply lead time, the value of ADI can be 
significant for perishable products [3]. This applies in particular to products with short shelf life 
durations, where the retailer’s goal is to simultaneously minimize both the stockout rate and the 



spoilage rate. The U.S. Department of Agriculture estimates that the retail-level inventory shrink 
rates for fruits, vegetables, meat, and seafood products are all higher than 10% [4]. 
As suggested by Song et al. (2021), “… when produce is more perishable, omni-channel strategy 
improves the retailer’s profits and the consumer surpluses with either a (delivery) or (store pickup) 
mode. Therefore, omni-channel operation should be implemented especially for fresh produce with 
high loss rates” [5]. Another prior research by Siawsolit & Gaukler (2021) also provides evidence 
of this. Essentially, the shorter the product’s lifetime, the higher the chance of product loss, which 
translates to higher ADI value. Therefore, we posit that the ADI value obtained through advance 
online orders of perishables may be able to help alleviate some portion of the marginal fulfillment 
cost of online grocery [6]. 
On the other hand, perishable items are also more challenging to manage in regards to omnichannel 
fulfillment. As noted by a participant of the online grocery satisfaction survey by Weber-Snyman 
& Badenhorst-Weiss (2018), “… tomatoes, they always pick the ripest tomatoes. Now everything 
is ripe and now you have to either make sauce or soup or something just to make use of it, and that 
was not necessarily the plan” [7]. Since consumers have differing expectations when picking their 
produce items, online grocery ordering systems often include the option to communicate these 
preferences to the store’s pickers. Consequently, perishable products tend to take a longer time to 
pick relative to non-perishables, and hence, incur higher fulfillment cost due to the slower pick 
rate per item. 
Apart from the need to have local delivery vehicles capable of maintaining temperature zones, or 
at least cool temperature, the grocer is also taking more responsibilities during the last steps of 
fulfillment. If the quality of an item delivered is sub-standard, the customer may distrust the entire 
omnichannel shopping process and not simply the one sub-standard order fulfilment. Thus, in order 
to quantitatively explore in-store fulfillment strategies, we are interested to find out how the 
benefits obtained from advance online orders of perishables compare to the incremental costs of 
offering omnichannel services. 
Specifically, our research goals include: i) Comparing the potential value of ADI for perishables 
and non-perishables, ii) Characterizing the relationship between ADI value and marginal 
omnichannel fulfillment cost, and iii) Identifying key performance markers for profitable curbside 
pickup fulfillment operations. We address these queries by first describing the process of deriving 
the value of ADI from advance orders, and then show how ADI value can be related on a dollar-
per-cart basis to the fulfillment cost of online ordering. Included is a numerical example that 
considers various inputs such as number of items per cart, proportion of short-life items, and item 
pick rate, with outputs ranging from net dollar gain/loss per each online order, to the minimum 
pick rate required to breakeven. 
The remainder of this paper is organized as follows. The Literature Review section discusses past 
contributions relevant to our study. Next, the Value of ADI section introduces the concept of ADI, 
when it occurs, and how the value from ADI is obtained. The Marginal Fulfillment Cost section 
defines fulfillment-related expenses attributed to online orders; taking into account the pick rate 
and added handling requirements. The Benefit-Cost Comparison section then relates the potential 
benefits of ADI to the labor costs required to prepare each pickup order, and the equations derived 
here allow for a comparison of several parameters in the Numerical Illustration section. Finally, 
the Conclusion section summarizes key observations, limitations, along with future research 
avenues.  



LITERATURE REVIEW 

This research applies knowledge from several distinct streams of literature, ranging from decision 
support science to e-commerce and fulfillment operations. To provide a brief context on important 
topics, the following subsections discuss relevant past contributions according to the research 
domains that our work aims to bridge. 

Perishable inventory management 

The common motivation in all perishable inventory management literatures stem from the fact that 
these products are subjected to deterioration in value over time. For perishable groceries, the main 
challenge is to minimize the cost incurred due to expiration. It is long established that, when 
possible, the retailer should issue the oldest inventory that can satisfy demand first [8]. 
In order to better characterize day-to-day inventory levels when there are products with differing 
remaining shelf lives at the same time, we look to the framework of Markov Decision Processes 
[9]. MDPs can accommodate problems where events are influenced by both stochastic variables 
and decision variables, allowing us to observe the system in ‘states’ of replenishment decisions. 
The advantages of using the MDP approach to find the optimal replenishment policy for 
perishables have resulted in numerous studies that make use of the tracking of shelf life 
information, such as Ketzenberg et al. (2015, 2018) and Gaukler et al. (2017) [10, 11, 12]. Still, 
much of the research in this domain limit the scope of analysis to traditional grocery retailing. 
Few studies are specifically geared toward capitalizing on the potential benefits of online grocery. 
Siawsolit et al. (2018) report that retailers selling perishable products and having access to shelf 
life information are able to significantly improve profit when online backlog order placements are 
allowed [13]. In a similar spirit, we are trying to improve the management of perishable grocery 
products by making use of demand information from online grocery.  

Advance demand information 

The time duration between when an online order is placed and when it is required for fulfillment, 
is referred to as the demand lead time [14]. Gallego & Özer (2003) study inventory systems with 
advance demand information and indicate that the cost impact depends on both the demand and 
supply lead times. We apply their finding that ADI available with a demand lead time duration at 
least as long as the supply lead time provides the best improvement to the optimal stock level under 
stationary demand distributions [15]. 
Karaesmen et al. (2004) study the value of ADI using various assumptions on the cost of obtaining 
the information. They also suggest that significant ADI benefits exist, but are dependent on the 
supply lead time [16]. Wang and Toktay (2008) further extend this line of research by considering 
scenarios where early fulfillment of advance orders are allowed. In contrast, we consider that 
fulfillment must occur at the time specified by the customer upon order placement [17]. 

Omnichannel fulfillment 

One of the contributions of this study is to quantify the marginal labor requirement that can be 
attributed to the fulfillment of online grocery orders. As described by Wollenburg et al. (2018), 
grocery retailers use different transportation, order picking, warehousing, and last-mile delivery 
approaches depending on product, customer, market, and retailer specifics [18]. Therefore, we 



focus on two of the costs that incur on all online grocery orders, namely the picking cost and 
additional fulfillment handling cost. 
Contrary to customers performing the picking in traditional in-store purchases, all online orders 
irrespective of fulfillment option are put together using the grocer’s resources. For instance, one 
estimate in Hübner et al. (2016) puts the pick rate of store workers at 80-120 line items per hour 
[19]. The faster the pick rate, the lower the cost to prepare each online order. 
Waitz et al. (2018) considers a decision support system that compares omnichannel service 
offerings to customer preferences and logistics operations, taking into account delivery fee, time 
slot, and freshness guarantee factors [20]. Siawsolit & Gaukler (2021) also explore how retailers 
can obtain ADI value from advance orders of perishables, but we extend that perspective to the 
cart level that considers non-perishable grocery items as well [6]. 
 

THE VALUE OF ADVANCE DEMAND INFORMATION 

The general premise of this paper stems from the finding that advance demand information from 
online grocery orders placed in advance of fulfillment can be of significant value to the retailer 
[3]. The time difference between order placement and order fulfillment allows the grocer to more 
effectively plan inventory holding to achieve higher profit levels. To that end, the following two 
sections describe the processes of deriving the values of ADI for grocery products belonging in 
the perishables category and non-perishables category, respectively. 
 

MODEL DEVELOPMENT: PERISHABLES 

Products with short lifetimes, such as loaf bread or packaged spinach, are subject to deterioration 
in quality over time. These products are uniquely at risk of being removed from inventory (or 
outdated), if the perceived quality or other freshness measures degrade beyond acceptable levels 
prior to the items being sold. By having access to ADI with adequate demand lead time, the grocer 
can eliminate safety stock for the advance order portion of demand. The risk of product outdating 
also decreases as more customers place advance orders [3]. In situations where the cost of product 
loss is high or demand is highly uncertain, the ADI-equipped grocer can safely increase stock level 
to some degree and achieve higher sales. 
With the main idea above in mind, the value of ADI for perishables is then a function of the 
stockout rate, outdate rate, and advance order rate, along with other factors such as product cost, 
shelf life, and demand and supply lead times. The Markov Decision Process-based, inventory 
decision support model developed in Siawsolit & Gaukler (2019) offers a periodic-review 
replenishment policy that already considers these factors [3]. As such, we employ an abbreviated 
form of that model for the purpose of quantifying the potential benefits of ADI for perishable 
items. 
The model’s objective is to identify the optimal replenishment quantity that maximizes the grocer’s 
long-run expected profit, given the presence of demand uncertainty. Key model assumptions 
include: 1) Replenishment requests can only be made at the start of every period and supply lead 
time is 1 period, 2) There is no supply shortage, no order size limit, and no fixed ordering cost, 3) 
Products are issued according to a first-to-expire, first-out policy, 4) Promotions and substitutions 



are excluded, and 5) Incoming demand is composed of Poisson-distributed demand streams, each 
with differing demand lead time durations. 
Using a period of 1 day as an example, a two-day advance order with demand lead time exceeding 
1 day would grant the maximum ADI value for our analysis purpose. As established by Gallego 
and Özer (2003), increasing the demand lead time beyond the supply lead time horizon would not 
further improve the optimal stock level under stationary demand distributions [15]. 
 
MDP model components  
 
In-store demand requiring immediate fulfillment in period 𝑡 is denoted by 𝑑!,!, and is distributed 
according to the p.m.f. 𝜙$𝑑!,!% with mean 𝜇. In this manner, a two-day advance demand originating 
in period 𝑡 to be fulfilled in period	𝑡+2 can be represented by 𝑑!,!#$ that follows the p.m.f. 
𝜃(𝑑!,!#$). Alternatively, the amount required in period 𝑡 to fulfill advance orders from period 𝑡-2 
is 𝑑!%$,!. 
Inventory units are classified according to the remaining shelf lives in periods, or age class 𝑎. If 𝑎 
decreases to 0 while the item remains in stock, the unit is considered outdated. The number of units 
in each age class is individually tracked through 𝑖&. Using M as the maximum age class, the 
inventory profile of a single product is indicated by {𝑖', 𝑖$, … , 𝑖(}, with the total on-hand inventory 
being 𝐼 = ∑ 𝑖&(

&)' . 
The replenishment order quantity, denoted by 𝑞, is the decision of interest. The system moves from 
a current decision state 𝑆 to the next decision state 𝑆* through the choice of 𝑞 and a transition 
probability matrix 𝑃6. The current state’s inventory profile and the online demand to be fulfilled in 
the upcoming and subsequent periods provide the needed information to be transferred between 
states. For each decision 𝑞, the probability of going from state 𝑆 to state 𝑆* is written as 
𝑃+$7𝑖', … , 𝑖( , 𝑑!%$,! , 𝑑!%',!#'8, 7𝑖'* , … , 𝑖(* , 𝑑!%$,!* , 𝑑!%',!#'* 8%, or abbreviated as 𝑃+(𝑆, 𝑆*). 
The following inventory transfer equation is used to find the next state’s starting inventory, for 
any integer age class 𝑘 in 1 ≤ 𝑘 < 𝑀. 

𝑖,* = <𝑖,#' − >𝑑!,! + 𝑑!%$,! −@ 𝑖-
,

-)'
A
#

B
#

								(1) 

with (	_	)# = max(0, _ ), and 𝑖(*  = 𝑞. The transition probability, given choice of 𝑞, for all 
combinations of 𝑑!,! and 𝑑!,!#$ that can bring the system from state 𝑆 to state 𝑆* is: 

𝑃+(𝑆, 𝑆*) =@ @ 𝜙(𝑑!,!) · 𝜃(𝑑!,!#$)
.!,!#$.!,!

				(2) 

All non-zero terms of equation (2) are computed to form the complete transition probability matrix 
𝑃6. 
To account for the expected revenue and costs of being in a certain state and taking a certain action, 
we consider one reward and three cost terms. For each unit of replenishment, the grocer incurs a 
cost 𝑐 which includes the cost of the item along with any incoming transportation/handling cost. 
Each stockout event may incur a penalty 𝑠 in addition to the loss in profit, to represent the potential 
long term effects on store loyalty. All inventory units that are held across periods are subjected to 
a holding cost ℎ per period. With 𝑝 denoting the retail price, we have the four terms: 

𝑝 · 𝑚𝑖𝑛$𝐼, 𝑑!,! + 𝑑!%$,!%																																		(3) 
−𝑐 · 𝑞																																																																		(4) 



−𝑠 · $𝑑!,! + 𝑑!%$,! − 𝐼%
#																																(5) 

−ℎ · P𝐼 − 𝑚𝑎𝑥$𝑖', 𝑑!,! + 𝑑!%$,!%R
#														(6) 

The cost of product outdating is not included here since it is accounted as a loss of inventory 
without corresponding revenue. Therefore, the net reward of being in state 𝑆 and taking action 𝑞 
is: 

𝑅+(𝑆) = ∑ [(3) + (4) + (5) + (6)].!,! · 𝜙(𝑑!,!)    (7) 
Similar to matrix 𝑃6, the expected rewards matrix 𝑅6 consists of 𝑅+(𝑆) for all possible states and 
choice of 𝑞. 
 
Optimal policy and ADI value  
 
After computing the required 𝑃6 matrix and 𝑅6 matrix based on desired inputs of 𝑀, 𝑝, 𝑐, 𝑠, ℎ, 
𝜙(𝑑!,!), and 𝜃(𝑑!,!#$), we proceed to solve the MDP. To find the optimal long run expected profit, 
the following profit-maximization value iteration function is applied. 

𝑉/#'(𝑆) ≔ max
+
\	∑ 𝑃+(𝑆, 𝑆*) ]𝑅+(𝑆) + 𝛾𝑉/(𝑆*)_0% `     (8) 

where 𝑓 signifies the iteration number, and the time-discount rate 𝛾 is specified at 0.9999.  
The iteration process continues to calculate 𝑉/#' until reaching convergence. The obtained policy 
is a list of optimal order quantity 𝑞, for each possible states 𝑆, that leads to the highest expected 
profit. From this policy we find the stationary distribution vector 𝜋 of the Markov chain, such that 
𝜋 = 𝜋𝑃612!34&5	+. 
The states’ information and the irreducible vector 𝜋 together allow us to compute the expected 
number of inventory units sold in each period. Let 𝑠𝑜𝑙𝑑0 = 𝑚𝑖𝑛(𝐼,	𝑑!,!	+	𝑑!%$,!), and we have the 
average units sold per period as the product of a vector containing 𝑠𝑜𝑙𝑑0 for all states and the 
vector π. It is also possible to differentiate between in-store and advance order sales by considering 
𝑑!,! or 	𝑑!%$,! individually. 
From here, we obtain the expected profit levels for comparable scenarios with and without advance 
online ordering. The maximum ADI value occurs when 100% of incoming demand comprise of 
advance orders that provide longer demand lead time than the supply lead time period. We take 
the difference in the attained profit level of the advance order-only scenario and the baseline zero-
advance-order scenario, and divide it by the average number of units sold per period to arrive at 
the potential ADI value per unit of perishables sold through advance ordering, or 𝑥2783. 
As a side note, although the overall ADI value is closely proportional to the advance order rate, 
the ADI value per unit sold is much less influenced by the advance order rate. For instance, using 
the same parameters for short-life perishables found in Siawsolit & Gaukler (2021), the average 
ADI value per unit sold when advance orders make up 20% of demand is around 60% of the all-
advance-orders scenario [6].  
 

MODEL DEVELOPMENT: NON-PERISHABLES 

Next, we discuss the potential ADI value for non-perishables. Products with very long shelf lives, 
such as canned peaches or frozen dinners, are able to remain in inventory for extended periods 
with minimal risk of product loss. The primary expenses associated with the management of non-



perishables include the acquisition, lost sale, and holding costs. Consequently, these items generate 
less expenses on a per-unit basis, relative to stocking and handling of perishable products. 
By having access to ADI with sufficient demand lead time, the retailer can stock the needed 
amount to fulfill demand, thereby avoiding lost sale costs and cross-period holding costs. For our 
purpose of comparing the value of ADI between the two product categories, we apply all of the 
same assumptions from Section 3.1 here as well. Because these assumptions exclude the fixed 
component of the replenishment ordering cost, we note that the resulting ADI value obtained here 
should provide a conservative estimate. 
Finding the optimal replenishment quantity is considerably more straightforward for non-
perishables. We consider a periodic review, order-up-to (OUT) policy, with a 1 period decision 
interval and 1 period supply lead time. This policy is optimal under our assumptions. The main 
idea of the OUT policy is to first decide the optimal OUT stock level, then review current inventory 
and request for replenishments to bring the stock level up to the OUT quantity. 
Using the same notations for 𝑐, 𝑝, 𝑠, ℎ, 𝜇, and 𝐼 from earlier, the cost of under-stocking is as 
follows. 

𝑈𝑛𝑑𝑒𝑟𝑎𝑔𝑒	𝑐𝑜𝑠𝑡 = 𝑝 − 𝑐 + 𝑠        (9) 
This represents the loss of opportunity to earn profit from selling the product, as well as any 
additional stockout penalty due to potential degradation of store loyalty. On the other hand, if the 
grocer holds more inventory than the demand turns out to be, the remaining products are carried 
over across selling periods and incur a holding cost ℎ per unit per period. Thus, for each set of 
input parameters, we can compute a critical ratio 𝐶𝑅 (similar to the newsvendor model’s 𝐶𝑅) to 
obtain the optimal in-stock probability. 

𝐶𝑅 =
𝑝 − 𝑐 + 𝑠

𝑝 − 𝑐 + 𝑠 + ℎ																																			(10) 

For a Poisson-distributed demand stream 𝜙(𝑑!,!), the OUT quantity is the minimum quantity such 
that: 𝑃𝑟𝑜𝑏. (𝑑𝑒𝑚𝑎𝑛𝑑	𝑜𝑣𝑒𝑟	𝑙𝑒𝑎𝑑	𝑡𝑖𝑚𝑒	 + 	1	𝑝𝑒𝑟𝑖𝑜𝑑	 ≤ 	𝑂𝑈𝑇	𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦) ≥ 𝐶𝑅. By subtracting 
the expected demand over the supply lead time plus review period from the OUT quantity, we 
obtain the mean quantity of products held across periods. This quantity along with ℎ provide the 
holding cost component of the grocer’s expenses. 
 Let 𝜓(𝑑9:#'), with mean (𝑙𝑒𝑎𝑑	𝑡𝑖𝑚𝑒 + 1) · 𝜇, represent the demand distribution during the lead 
time plus review period. The amount of lost sales expected to occur on an average period is 
calculated as: 

𝐸𝑥𝑝. 𝑙𝑜𝑠𝑠	𝑠𝑎𝑙𝑒 =@ (𝑑9:#' − 𝐼)#
.&'#(

· 𝜓(𝑑9:#')				(11) 

The costs incurred from shortages is then the product of the expected lost sale per period and the 
underage cost from equation (9). By combining the holding and shortage-related costs that can be 
eliminated by demand visibility, we obtain the potential ADI value per unit of non-perishables 
sold through advance ordering with sufficient demand lead time, or 𝑥;2. 

Potential ADI value per cart 

Because the ADI values for perishables and non-perishables are expected to be significantly 
different, we define 𝑥<&8! as the potential ADI value per average cart; given average number of 
items per cart 𝑛 and proportion of short-life items in the cart 𝜆. The ADI value per cart increases 
linearly with 𝑛, and is given by: 



𝑥<&8! = 𝑛 ∙ x$𝑥2783 ∙ 𝜆% + ]𝑥;2 ∙ (1 − 𝜆)_y      (12) 
Equation (12) is important since different grocery chains (or even stores of the same chain in 
various settings) may generate differing sales levels from products in the perishables category. 
Moreover, we can then directly compare the benefits afforded by ADI to the marginal fulfillment 
cost of obtaining the ADI on a very simple dollar-per-cart basis. 
 

MARGINAL FULFILLMENT COST 

The quick adaptations of many grocers in ramping up their online grocery services during the 
coronavirus outbreak had been pivotal in helping high-risk individuals reduce their exposures to 
crowded settings. Omnichannel fulfillment offerings such as curbside pickup or home delivery are 
crucial in supporting and retaining customers at the moment. As we transition back to normalcy, 
the operational expenses associated with these services may force some retailers to increase prices, 
or add a service fee based on the customer’s fulfillment option. 
We propose that brick-and-mortar retailers capable of acquiring and integrating ADI into their 
replenishment decisions are able to better absorb the costs of offering these services; making them 
well-positioned to capture the demand of customers that wish to continue using online grocery 
going forward. To that end, the next step is to quantify the expenses specifically incurred when 
fulfilling online orders. 
Using the classification scheme found in Fransoo et al. (2019), we limit our scope of analysis to 
business model 3 (online ordering and store-based fulfillment) due to current prevalence in the 
United States [21]. It is assumed that a home delivery service is optional; with a separate fee passed 
on to consumers who prefer the convenience. For a buy online, pickup in-store scenario, there are 
two primary expenses not present in the traditional walk-in scenario, namely the cost of picking 
the products to prepare the customer’s online cart order, and the labor cost of additional handling 
required to pass on the completed orders to customers. 
In contrast to the customers performing the task of picking products, online orders require labor 
on the part of store employees to put together the customer’s cart. The average number of line 
items that one picker can pick in one hour is referred to as the pick rate 𝑟. Because of varying 
product mixes, store layouts, or levels of information technology support, the pick rate can differ 
significantly from store to store. 
As an example, the pick rate for Walmart’s in-store pickup service is estimated at 80 line items 
per hour [22]. However, as described in Section 1, perishable items are expected to have a lower 
pick rate than non-perishables. Therefore, we account for the labor costs required to pick items 
from each category separately by designating 𝑟2783 for perishables pick rate and 𝑟;2 for non-
perishables pick rate. 
Once the required items have been picked, the completed orders must be navigated by store 
associates to reach the customers’ hands; per the fulfillment pickup time specified upon order 
placement. We assume there is a fixed amount of labor time associated with this final step of 
fulfillment. In essence, this additional handling time covers the transfer of goods to the fulfillment 
location, such as a pickup kiosk or an assigned parking space, and may include reviewing the order 
with the customer. The average handling time needed per each pickup order is represented by 𝑧. 
Let 𝑤 be the wage in dollars per hour, and we can then approximate the marginal fulfillment cost 
of each pickup order, 𝑦<&8!, through the following equation: 



						𝑦<&8! = 𝑤 ∙ >	
𝑛 · 𝜆
𝑟2783

+
𝑛 · (1 − 𝜆)

𝑟;2
+ 𝑧	A												(13) 

Equation (13) takes into account the pick rates of products in the perishables and non-perishables 
sections, the proportion of cart items in each category, as well as the average fixed amount of time 
needed in handing over completed orders to customers. 
 

BENEFIT-COST COMPARISON 

Equations (12) and (13) capture the potential benefits and added challenge, respectively, of 
perishable products within the context of omnichannel grocery retailing. The proportion of 
perishables in an average cart can be adjusted by scaling λ from 0% to 100%, allowing for a 
convenient comparison of ADI values between perishables and non-perishables to address our 
research goal (i).  
In addition, we can observe the effects of increasing the cart size, which simultaneously increases 
both the ADI benefit and the marginal fulfillment cost of each online order. And above all, by 
quantifying 𝑥<&8! and 𝑦<&8! on the same dollar-per-cart scale, we can better characterize the net 
impact on profits from receiving advance online orders and taking full advantage of the 
accompanying ADI. For our research goal (ii), we define the percentage of marginal fulfillment 
cost that is offset by ADI as: 

𝑝𝑒𝑟𝑐𝑒𝑛𝑡	𝑐𝑜𝑠𝑡	𝑜𝑓𝑓𝑠𝑒𝑡 = 	
𝑥<&8!
𝑦<&8!

															(14) 

The percent cost offset ratio provides a crude insight on whether a brick-and-mortar retailer can 
economically offer a buy online pickup in-store service free of charge. The higher this ratio is, the 
more effective the strategy to obtain ADI for omnichannel fulfillment becomes. The breakeven 
condition, where the dollar benefits obtained from ADI per cart is equal to the marginal fulfillment 
cost per cart is: 𝑥<&8! = 𝑦<&8!. 
Apart from lowering 𝑧, the grocer can attempt to increase the pick rate to reduce 𝑦<&8!. Let us 
assume that the pick rates for perishables and non-perishables are equal at 𝑟7+ = 80 items per hour, 
and that there are 𝑛 = 20 items in an average cart. Under this scenario the picking labor time is 
already 15 minutes, which is likely to be longer than the incremental handling time of pickup 
orders (given that the in-store cashier’s time requirement would also decrease in the presence of 
online orders). For this reason, it should be worthwhile for grocers to explore new methods and 
technologies that can improve the in-store pick rate. 
To find the target pick rate that can fully offset the fulfillment cost of pickup orders, equation (15) 
considers the hourly wage, number of cart items, ADI value per cart, and pickup orders handling 
time. 

𝑏𝑟𝑒𝑎𝑘𝑒𝑣𝑒𝑛	𝑟7+ =	
𝑤 · 𝑛

𝑥<&8! −𝑤 ∙ 𝑧														(15) 

Being able to estimate the breakeven pick rate can assist in identifying which key performance 
markers, if any, the grocer should focus on in their effort to achieve profitable curbside pickup 
fulfillment operations (research goal iii). In the case that 𝑟2783 ≠ 𝑟;2, we can find the breakeven 
pick rate for perishables, given some 𝑟;2, such that 𝑥<&8! = 𝑦<&8!. 



𝑏𝑟𝑒𝑎𝑘𝑒𝑣𝑒𝑛	𝑟2783 =	
𝑤 · 𝑛 · 𝜆

𝑥<&8! −𝑤 ∙ 𝑧 − 𝑤 · 𝑛 · (1 − 𝜆)
𝑟;2

			(16) 

Alternatively, equation (16) can also be reformulated to find the target 𝑟;2 instead. 

								𝑏𝑟𝑒𝑎𝑘𝑒𝑣𝑒𝑛	𝑟;2 =	
𝑤 · 𝑛 · (1 − 𝜆)

𝑥<&8! −𝑤 ∙ 𝑧 − 𝑤 · 𝑛 · 𝜆
𝑟2783

							(17) 

 

NUMERICAL ILLUSTRATION 

Using the methods and equations described up to here, we illustrate through a small numerical 
example how a grocer might specify the necessary parameters to conduct what-if analyses 
regarding omnichannel fulfillment strategy. The cost of each unit of product to the retailer, 𝑐, is 
considered at $2 and $5. Products are marked up by either 50% or 100%, creating prices 𝑝 of $3, 
$4, $7.5, and $10. The stockout penalty 𝑠 is 50% of 𝑐 when included, leading to values of $0, $1, 
and $2.5. All products carried over across selling periods are subject to a holding cost ℎ of $0.05 
per unit per period. 
Demand is characterized by the Poisson distribution with mean 𝜇 of 5 units per period and a 
maximum of 15 units per period. We use fixed product shelf life 𝑀 of 1, 2, 3, 4, and 5 periods to 
represent short-life perishables, and one additional non-perishables category where products do 
not deteriorate at all. The experiments comprise a full-factorial design of the parameters described 
here. It is worth noting that, although the parameter values used here have been chosen to cover a 
wide range of grocery product types, the following results and general observations may vary 
based on each grocer’s unique set of input parameters. 

ADI benefits  

To compare the potential values of ADI from perishables and non-perishables, we start at their 
optimal replenishment policies. The MDP policy described in Sections 3.1.1 & 3.1.2 and the OUT 
policy from Section 3.2 allow us to obtain the optimal levels of inventory held across selling 
periods for perishables and non-perishables, respectively. Figure 1 indicates the average amounts 
of inventory units that are held across selling periods; categorized by product shelf lives. Each data 
point marks the average value of 8 experiments, each containing a distinctive combination of 𝑐, 𝑝, 
and 𝑠. 
 



 
Figure 1. Cross-period inventory by shelf lives 

 
For instance, replenishment products that arrive with a 1-period life are either sold or outdated by 
the end of the same period, therefore cross-period holding is always zero units. On the other hand, 
the mean OUT quantity is 17.38 for non-perishables, which indicates that around 7.38 units are 
held as safety stock to cover the demand during lead time plus one period. Intuitively, the optimal 
stock level increases as the risk of product outdating decreases. 
Another observation is that products having different prices and stockout penalty costs may end 
up generating the same ADI value. Let us consider two products with a 3-periods shelf life, {𝑐=$2, 
𝑝=$3, 𝑠=$1} and {𝑐=$2, 𝑝=$4, 𝑠=$0}. These two products produce the same optimal fill rate at 
97.6%. However, the first item achieves 87.3% of the theoretical maximum profit level (if given 
full demand visibility), while the second attained a much better 93.7% of max profit (and a little 
over double the net profit in dollars). 
Given these results, it would be reasonable to infer that the potential value of ADI is higher when 
the loyalty-degradation stockout penalty 𝑠 is high. But in fact, the ADI values are exactly the same 
for the above two products at $0.127 per unit sold. This is because their 𝐶𝑅 values (equation 10 
with outdate cost) are the same, and by extension, the costs associated with lost sales and outdating 
as well. 
Figure 2 shows the potential value of ADI per each unit of product sold through advance ordering, 
averaged and sorted by shelf lives. Products with a 1-period shelf life face the highest risks of 
outdating, which translate to the highest ADI values. In addition, we note that products in the 5-
periods shelf life category achieve an average fill rate of 99.2%. As a result, their ADI values are 
very close to that of non-perishables. This is partly due to the fixed shelf life parameters used here. 
They do not contain variability, which has been shown to negatively impact inventory management 
costs [6]. Therefore, if shelf life variability is involved, the difference between the potential ADI 
values of perishables and non-perishables would be greater than currently shown in Figure 2. 
 



 
Figure 2. Potential ADI value per unit sold 

 
For this illustration purpose, we take the average of the ADI values for product shelf lives of 1 
through 5 periods as the ADI value for perishables, or 𝑥2783 = $0.399. A more in-depth analysis of 
ADI values for short-life perishables can be found in Siawsolit & Gaukler (2021) [6]. The ADI 
value for non-perishables is taken directly as shown in Figure 2, 𝑥;2 = $0.086. 
While Figure 2 suggests that the potential reward of incorporating ADI into replenishment 
decisions is more significant for perishables, the proportion of these items in an average customer 
cart must also be taken into account. We consider 𝜆 at two levels, including 20% and 40%, along 
with 𝑛 = 15 and 30 items per average cart. For an example using equation (12) with 𝜆 = 20% and 
𝑛 = 15, we can obtain 𝑥<&8!  = $2.23. 

Fulfillment operations 

Next, we investigate the factors within the retailer’s control that can influence the marginal 
fulfillment cost. Due to statistics on the difference between the pick rates of perishables and non-
perishables being relatively scarce at this time, we specify two pick rates for each of these 
categories; based on Walmart’s estimated 80 line items per hour. These include {𝑟2783=40, 
𝑟;2=80}, {80, 80}, and {80, 160}. The pick rates selected here should provide a reasonable range 
of values that are applicable to many retailers competing in this space. 
In terms of the additional handling time, we consider two scenarios of pickup orders fulfillment. 
The first is a conventional curbside pickup fulfillment scenario, where the customer is asked to 
park within a designated area and notify the store upon arrival. A store member will then bring out 
the entire order in a cart and help to unload the bagged items into the customer’s vehicle. It is 
assumed that each curbside pickup order requires around 5 minutes of store labor time.  
The second scenario is a hypothetical self-pickup fulfillment, where completed orders are placed 
in temperature-controlled lockboxes near the store entrance. The customer must scan their 
smartphone or loyalty card to retrieve the items inside. For this setting, we assume an associate 
takes 2 minutes to fill each lockbox and register the identifying information for pickup. And lastly, 
we set the labor cost per hour at 𝑤 = $15 (CA minimum for 2022). 



As an example with 𝑤=$15, 𝑟7+=80 items per hour, 𝑧=5 minutes, and 𝑛=15 items, the marginal 
fulfillment cost is 𝑦<&8! = $4.06, or $0.27 per unit sold by pickup. If we shift to a self-pickup 
fulfillment and 30 items per cart, 𝑦<&8! increases to $6.13, whereas the per-unit cost decreases to 
$0.20 due to the effects of shorter handling time and larger cart size. 
Putting these results into perspective, one estimate place the “incremental cost per unit (of) sale of 
merchandise through online order picked by instore shopper valet (where) customer picks up order 
at curbside” at $0.41 per unit [2]. If we specify the same 𝑤=$20, 𝑟7+=65, and 𝑛=25 as in their case, 
equation (13) gives a comparable 𝑦 =  $0.37 per unit sold via curbside pickup fulfillment. 

Cost offset potential 

We now review the net financial impacts to the grocer per customer order. In Table 1, columns 2 
to 6 represent our input parameters, comprising of the percentage of perishables in an average cart, 
fulfillment handling time, number of items in cart, and the pick rates for perishables and non-
perishables. We keep the same ADI values obtained in Section 6.1, namely 𝑥2783=$0.399 and 
𝑥;2=$0.086, along with w=$15 for all of the experiments shown in Table 1. 
The net per order column highlights some of the most costly scenarios considered here, with darker 
shades signifying a higher loss-per-cart to fulfill pickup orders. The highest net cost observed here 
is $3.54 per cart, which is due to the small percentage of short-life items and the slow pick rates. 
For instance, if we double the pick rates in experiment #4, experiment #6 gives a much more 
palatable $0.17 net cost per pickup order. 
Figure 3 displays the percentages of marginal fulfillment cost offset by ADI for 𝑛=15 items per 
cart; categorized by 𝑧, 𝜆, and pick rates. For instance, the 55% number on top of the dashed line 
marks the percent cost offset for 𝑧=5 minutes, 𝜆=20%, and 𝑟7+=80 items per hour. Halving 𝑟2783 
to 40 items per hour gives the solid line, while doubling 𝑟;2 results in the dotted line. Overall, 
Figure 3 visually captures the cost-advantages of increasing the item pick rates and reducing the 
handling time associated with pickup orders. 
 

 
Figure 3. Percent cost offset at various pick rates 

 



The 100% horizontal line in Figure 3 indicates the point where the potential benefit from ADI is 
equal to the incremental cost to fulfill the online orders. The right-most value of 96% cost offset 
for 𝑟7+=80 items per hour is very close to the breakeven condition. Therefore, experiments #19, 
#20, and #21 in Table 1 produce a breakeven 𝑟7+ that is just 5% higher than the estimated pick rate 
for Walmart. 
Another interesting observation occurs when comparing experiments #3 and #22, where none of 
the inputs in columns 2 to 6 are identical. Both of these scenarios lead to the same 76% cost offset, 
but the net cost per online cart is $0.71 versus $2.04; nearly a three-fold difference. Conversely, 
the breakeven 𝑟7+ for #3 is very high due to the smaller cart size and fewer perishable items. 
Even with 𝑟;2 of 160 items per hour, 𝑟2783 can never be fast enough to attain the breakeven 
condition for experiment #3. Hence, we emphasize the importance of reviewing several key 
performance measures together when quantifying the cost-benefits of receiving advance online 
orders. For scenario #3, some of the options for the retailer include reducing handling time, 
increasing prices/service fees, and to consider shifting fulfillment of online orders to app-based 
service providers or possibly investing in automated fulfillment warehouses. 
At this time, there are numerous automated picking systems being tested and improved. Walmart’s 
version of the structures of robotic arms is named Alphabot, and it is designed to achieve a pick 
rate of 800 lines per hour [22]. Although it is unclear how these automated systems can handle 
perishable products, the cost implications are still significant given that the 800 pick rate applies 
only to non-perishables. Taking values from experiment #4 (our worst dollar-per-cart performer) 
and changing 𝑟;2 to 800, the percent cost offset greatly improves to 113%; exceeding the 
breakeven condition. In this hypothetical scenario, the breakeven in-store pick rate for perishables 
is still under 60 items per hour. This is true even when we disregard the ADI value from products 
with shelf lives of 1 period and instead use 𝑥2783=$0.199 per unit (the average value from shelf 
lives 𝑀=2,3,4,5 in Figure 2). 
The insights obtained from this numerical illustration are made possible by bridging the gap 
between advance demand information and omnichannel fulfillment literatures. Brick-and-mortar 
grocers can use a similar method as described here to conduct several analyses in identifying the 
potential opportunities and challenges of offering online grocery services. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 1. Summary of net cost & breakeven pick rate 
 

# 𝝀 𝒛 mins 𝒏 𝒓𝒑𝒆𝒓𝒊 𝒓𝒏𝒑 𝒙𝒄𝒂𝒓𝒕 𝒚𝒄𝒂𝒓𝒕 Net / order B. 𝒓𝒆𝒒 B. 
𝒓𝒑𝒆𝒓𝒊 

B. 
𝒓𝒏𝒑 

1 20% 5 15 40 80 $2.23 $4.63 -$2.40 230 NA NA 
2 20% 5 15 80 80 $2.23 $4.06 -$1.83 230 NA 432 
3 20% 5 15 80 160 $2.23 $2.94 -$0.71 230 NA 432 
4 20% 5 30 40 80 $4.46 $8.00 -$3.54 140 NA 376 
5 20% 5 30 80 80 $4.46 $6.88 -$2.42 140 NA 173 
6 20% 5 30 80 160 $4.46 $4.63 -$0.17 140 94 173 
7 20% 2 15 40 80 $2.23 $3.88 -$1.65 130 NA 298 
8 20% 2 15 80 80 $2.23 $3.31 -$1.08 130 NA 154 
9 20% 2 15 80 160 $2.23 $2.19 $0.04 130 75 154 
10 20% 2 30 40 80 $4.46 $7.25 -$2.79 114 NA 211 
11 20% 2 30 80 80 $4.46 $6.13 -$1.67 114 NA 127 
12 20% 2 30 80 160 $4.46 $3.88 $0.58 114 53 127 
13 40% 5 15 40 80 $3.17 $5.19 -$2.02 117 390 NA 
14 40% 5 15 80 80 $3.17 $4.06 -$0.89 117 390 170 
15 40% 5 15 80 160 $3.17 $3.22 -$0.05 117 84 170 
16 40% 5 30 40 80 $6.34 $9.13 -$2.79 88 105 461 
17 40% 5 30 80 80 $6.34 $6.88 -$0.54 88 105 95 
18 40% 5 30 80 160 $6.34 $5.19 $1.15 88 53 95 
19 40% 2 15 40 80 $3.17 $4.44 -$1.27 84 92 323 
20 40% 2 15 80 80 $3.17 $3.31 -$0.14 84 92 87 
21 40% 2 15 80 160 $3.17 $2.47 $0.70 84 49 87 
22 40% 2 30 40 80 $6.34 $8.38 -$2.04 77 73 202 
23 40% 2 30 80 80 $6.34 $6.13 $0.21 77 73 75 
24 40% 2 30 80 160 $6.34 $4.44 $1.90 77 43 75 

 

CONCLUSION 

We set out to address the rising cost of omnichannel grocery retailing. To combat the increase in 
fulfillment expenses, we propose the use of ADI obtained when receiving advance online orders 
with a sufficient demand lead time. Noteworthy findings of this study are summarized according 
to our research goals as follows. 
The first objective (i) is to compare the potential value of ADI obtained from advance order sales 
of perishable and non-perishable products. We describe the methods to obtain ADI values for both 
of these product categories. Using equations 1 through 11 and a range of product-specific 
parameters, we find that the average ADI value per unit of perishables sold is over four times 
higher than for non-perishables. 
The value of ADI is dependent upon a newsvendor-type 𝐶𝑅 ratio, as well as the replenishment 
product’s shelf life and incoming demand distributions. Products facing the highest risks of 



outdating naturally give the highest ADI values. In addition, the ADI value per cart depends also 
on the proportion of short-life items and the number of items in each cart. 
Our next aim (ii) is to characterize the relationship between the potential benefits of ADI and the 
marginal costs to fulfill online orders. Equation (13) allows us to quantify the incremental labor 
cost of preparing each pickup order, taking inputs from wage per hour, item pick rates, and 
fulfillment handling time. For both the curbside pickup and the self-pickup scenarios, we equate 
the ADI value to the marginal cost on a dollar-per-cart basis. We also observe a number of 
scenarios where the potential benefits from ADI outweigh the incremental fulfillment costs. 
Finally, the overarching goal of this study (iii) is to identify key performance markers for a 
profitable omnichannel operation. We find that the pick rate is one of the most decisive 
performance marker, and that the more perishable items sold, the stronger the impact of improving 
pick rate. The same is true when increasing the cart size of online orders. However, we must 
caution that in some scenarios, there exists no pick rate that can achieve a cost-breakeven 
condition. In these cases, it should be more worthwhile to explore solutions aside from trying to 
improve the pick rate alone. 
On a more optimistic note, we have identified scenarios where a reasonable pick rate of 80 items 
per hour can fully offset the marginal fulfillment cost. This condition is at least 40% short-life 
items in a cart size of at least 30 items, and fulfillment handling time is 2 minutes or less at $15 
wage. Thus, our work validates that it is possible to completely offset omnichannel costs through 
achievable performance measures. 
In conclusion, the methods described in this paper allow for a multitude of analyses to support 
grocery retailers when making high-level decisions concerning omnichannel fulfillment. Retailers 
that stand to gain the most are those already receiving online orders in advance, but are not yet 
utilizing ADI to its full potential. The takeaway from our numerical illustration is that perishables 
with a high loss-rate, even with their hard-to-handle characteristics, are still good targets for 
omnichannel grocery because of the ADI benefits. In other words, grocers selling more perishables 
are better-positioned to promote advance online ordering. 
The limitations of this research are primarily attributable to the assumptions used in estimating the 
value of ADI and the marginal fulfillment cost. These range from excluding the fixed component 
of the ordering cost and the delivery component of omnichannel fulfillment cost, to not considering 
the variability in the shelf lives of replenishment items. Still, our study indicates that there are 
untapped rewards for online grocery retailing. Future research is needed to incorporate the last-
mile delivery cost into total cost, or compare the long run return on investment of automated 
fulfilment centers, as well as develop new best-practices to reduce the handling time of in-store 
pickup orders. 
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