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ABSTRACT 

 
This paper aims to design a resilient supply chain network under facility disruptions. We consider the 

concept of an emergency backup supply (EBS) by deciding the second supply facilities (SSFs) when the 

primary supply facilities (PSFs) cannot satisfy the demand due to disruptions. In addition, we also identify 

the required extra storage capacity at each facility which provides resilience to the supply chain when any 

disruption occurs. For this, we propose the framework consisting of the traditional facility location-

allocation (TFLA) model plus the scenario-based facility location-allocation (SBFLA) model. Using a 

case study, we demonstrate the applicability of the framework. 

 

Keywords: resilient supply chain, primal supplying facility, secondary supplying facility, a two-stage 

stochastic model, scenario-based facility location-allocation. 

 

INTRODUCTION 

 

These days, supply chain performance critically affects the firms’ business performance, and firms are 

relying more on their supply chains. Thus, supply chain resilience has recently become one of the main 

concerns for major firms to remain competitive [14]. Supply chains are faced with various types of 

disruptions that could prevent them from their normal operations, negatively affecting the performance by 

producing undesirable effects such as facility shutdown leading to demand unfulfillment. Particularly, the 

current trend toward lean inventory management makes the supply chains more vulnerable to any 

disruptions. Hence, the supply chains must recover from the disruption and function normally as quickly 

as possible when any disruption occurs. This ability is referred to as supply chain resilience (SCRES) 

[12][16]. 

 

SCRES is different from supply chain risk management (SCRM). SCRM primarily deals with risk 

identification, evaluation, mitigation, and monitoring to mitigate the likelihood of the risk and its impact 

on the supply chain [15]. However, it is apparent that not all potential risks can be identified or avoided. 

Thus, securing a high level of SCRES is desirable in case of disruption. In this sense, Grötsch et al. [3] 

claim that “SCRM’s particular objective is to build and maintain resilient supply chains.” Developing 

resilient supply chains means optimizing the location, inventory, distribution channels, capacity, inventory 

management, and other network parameters to strengthen resilience. One of the better ways to optimize 

these parameters is to consider them in the supply chain network design phase through diverse 

mathematical programming models. 

 

Traditionally, the facility location-allocation (FLA) design problem is frequently used in the supply chain 

network design. The traditional FLA (TFLA) design problem assumes the facility is always available and 

generates optimized supply chains by minimizing total supply chain cost while satisfying demands by 
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distributing products through the distribution channels to customers. Although deterministic mathematical 

models are the most common in the past [13], some researchers introduce a two-stage stochastic model to 

incorporate a number of alternative disruption scenarios into the model because of the significance of 

uncertainty [11][7].  

 

When there is no risk of disruptions, all facilities in the supply chains are assumed to supply products to 

customers and satisfy their demands. These facilities are called primary supplying facilities (PSFs). When 

one or more PSFs are unavailable due to disruptions (e.g., shutdown), customer’s demands that the original 

PSFs should have covered should be satisfied or backed up by other facilities to strengthen the supply 

chain’s resilience.  These facilities are referred to as secondary supplying facilities (SSFs), and this process 

is called an emergency backup supply (EBS). Depending on the design concept, a facility may work as 

both a PSF and an SSF. Thus, each facility in the resilient supply chain may need to carry more inventories 

(i.e., higher storage capacity) than the supply chain without any EBS [5]. 

 

This paper aims to propose a framework to design a resilient supply chain in the sense of EBS using FLA 

and two-stage stochastic programming covering diverse facility disruption scenarios. Our framework 

involves selecting facility locations, establishing their storage capacity and inventory level, roles as PSFs 

and SSFs for each site. The eventual goal is to obtain resilient supply chains with EBS at the minimum 

cost. 

 

The remainder of this paper is organized as follows. After the literature review and background, 

mathematical modeling of the resilient supply chain is provided, followed by a case study and observation. 

Lastly, conclusions are presented. 

 

LITERATURE REVIEW AND BACKGROUND 

 

Many authors have studied FLA problems since Cooper [2] sets an FLA problem as a mathematical 

programming model. Manzini and Bennani [9] define FLA problems as the problem to determine the 

optimal location for each of the new facilities and the optimal allocation of existing requirements to the 

facilities so that all requirements are satisfied. Askin et al. [1] consider the problem of designing a 

distribution network for a logistics provider that acquires products from multiple facilities and then 

delivers them to retailers.  They show that potential facility locations can decrease total logistics cost (TLC) 

while maintaining the desired service level.  Manatkar et al. [8] also consider maintaining the desired 

service level in addition to reducing the TLC to design FLA problems.  

Pablo et al. [11] use a two-stage stochastic model to design resilient supply chains with the risk of facility 

disruption. They incorporate multiple disruption scenarios of distribution centers (DCs) into the model 

and minimize TLC and investment costs while satisfying demands. They do not use any concept of PSF 

and SSF but consider many scenarios to show how the supply chains should be designed against the 

disruptions in the scenarios. They point out that a supply chain without disruption faces a serious capacity 

shortage issue when disruptions occur. Hohenstein et al. [4] provide a comprehensive review of SCRES 

in terms of the definition, elements in each phase of SCRES and SCRES assessment and measurement. 

They conclude that research regarding quantitative analysis to measure SCRES is very limited.  They 

suggest that the overall SCRES level be measured three performance indicators–customer service, market 

share, and financial performance. Masoud and Mahour [10] use a two-stage stochastic mixed-integer 

programming model where suppliers with the possibility of disruption are allocated to regions to minimize 

the expected total network costs. The first stage determines the suppliers and their capacities, while the 
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second stage determines appropriate transportation channels with different costs and times to the 

customers after potential future disruptions are evaluated. 

 

Hong and Jeong [5] introduce a multi-objective mixed integer programming to design supply chains with 

distribution centers (DCs) and demand points (DPs) where a DC would feed several DPs. When there is 

no disruption in DC, it feeds its own DPs in a way to minimize total TLC with a penalty cost for unsatisfied 

demands and to maximize expected demand simultaneously. Assume that a DC (e.g., DC1) supplies to 

DP1 and DP2 when there is no disruption (Figure 1(a)). Then, DC1 is a primary supply facility (PSF) for 

DP1 and DP2. If a PSF (e.g., DC1) for DP1 or DP2 is unavailable due to disruption, the DP1 and DP2 should 

be covered by other DCs (e.g., DC2 for DP1 and DC3 for DP2) as a part of EBS. In this case, DC2 and DC3 

serve as a secondary supplying facility (SSF) for DP1 and DP2, respectively. The same thing is applied to 

DC1. It serves as not only a PSF for DP1 and DP2 as but also an SSF for some other DPs whose PSFs 

become unavailable. In this way, each DP has its own PSF and SSF, and a DC plays a role in both PSF 

and SSF (Figure 1(b)). Hong and Jeong [5] obtain the optimized supply chain with EBS by solving a 

multi-objective mixed integer model with Goal Programming. However, they assume that only one PSF 

disrupts at a time. That is, when multiple PSFs are disrupted simultaneously, there is no EBS available.  

 

DC1

DP1

DP2

DC2

DC3

                 

DC1

DP1

DP2

DC2

DC3
Flow from PSF

Flow from SSF

 
 

Figure 1(a). Network without EBS                                  Figure 1(b) Network with EBS 

 

Karatas and Yakici [6] propose the backup p-median problem with the objective of minimizing the 

distances to both primary and backup facilities to locate emergency service systems in congested 

environments. They employ a combined optimization and simulation approach to determine the level of 

backup service and demand assignment policy. 

 

This study extends Hong and Jeong [5] and Pablo et al. [11] to allow for the multiple DC disruption 

scenarios using the scenario-based mathematical modeling and design the resilient supply chains with 

EBS. Further, instead of using any direct penalty cost as in Hong and Jeong [5], this study calculates all 

TLC triggered by a fictitious DC when actual DC’s capacity is not enough for DPs, and the TLC cost is 

considered a penalty cost. Pablo et al. [11] have no concept of PSF and SSF for DC, but this study 

identifies the roles of DC into PSF and SSF or both. It further calculates how many extra inventories are 

required to conduct the twofold roles, providing resilience. Using a scenario-based approach in the two-

stage stochastic model, all DC disruption scenarios can be incorporated into the model, which would 

improve resilience to the supply chain by customizing capacity at each facility. In this study, a site (e.g., 

DP) may have multiple SSFs depending on different facility disruption scenarios since multiple sourcing 

is allowed, while Hong and Jeong [5] allows only one SSF for each DP due to single sourcing only. 
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It is apparent that a supply chain may not satisfy all demands at DPs when there are not enough inventories 

at DCs. Thus, a resilient supply chain may need to carry more inventories (or capacities) at higher 

inventory cost. Even in that situation, some DPs may still not be supplied in some cases (e.g., all facilities 

are disrupted). Thus, it is useful to track the fill rate–the percentage of customer orders the supply chain is 

able to meet without running out of stock at any given time–at each scenario as the performance measure. 

To achieve this objective, our framework starts with a traditional FLA model to identify PSFs for all DPs 

and compute the required inventories to satisfy all demands. After this, we apply a two-stage stochastic 

program (i.e., scenario-based FLA model) to obtain a resilient supply chain with EBS with extra 

inventories 

 

MATHEMATICAL MODELING OF THE RESILIENT SUPPLY CHAINS 

The following nomenclature is used: 

Sets:  

𝑗 ∈ 𝐶: index set of potential sites for DCs, j =1, 2, …, M 

𝐶 = 𝐶𝑅 ∪ 𝐶𝐹, where 𝐶𝑅is a set of a regular DCs and 𝐶𝐹 is a set of a fictitious DC 

𝑚 ∈ 𝑃: index set for DPs, m = 1, 2, …, N 

s ∈ 𝑆: index set for DC disruption scenarios, s = 1, 2, …, K 

Note that C ⊆ P, since DC is located at site j, site j should feed itself, and otherwise, it is used as DP. 

Parameters: 

𝑏𝑗: minimum number of DPs that DC j can cover 

𝐵𝑗: maximum number of DPs that DC j can cover 

𝑐𝑗𝑚: cost of shipping one unit of demand per mile from DC j to DP m  

𝐶𝐴𝑃𝑗
𝑚𝑎𝑥: design capacity of DC j 

𝑑𝑗𝑚: distance between DC j and DP m 

𝐷𝑚: demand for the DP m, in units/period 

𝑓𝑗: amortized fixed cost for constructing and operating DC j 

vj: cost per capacity at DC j 

𝐹𝑚𝑎𝑥: maximum number of DCs can be built 

ℎ𝑗: holding cost per unit per period at DC j 

𝑝𝑗:  risk probability of DC’s being disrupted, located at site j  

𝜋𝑠: disruption probability of scenario s 

𝑇𝑠𝑗: indicator for DC j’s availability in scenario s.1 if DC j is available (no disruption); 0 otherwise in 

scenario s 

N: number of periods 

Decision Variables: 

𝐹𝑗: binary variable deciding whether a DC located is located at site j 

capj: storage capacity at DC j 

𝑦𝑗𝑚: percentage of DP m’s demand satisfied by the storage capacity distributed from DC j. It is a real 

number between zero and one 

𝑦𝑠𝑗𝑚: percentage of DP m’s demand satisfied by the storage capacity distributed from DC j. It is a real 

number between zero and one in scenario s. It is a real number between zero and one 

Assumptions: 
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(i) A DC can be located at any potential facility site. If a facility is located at the facility site j,  the 

distance, 𝑑𝑗𝑚, is assumed to equal to zero if j = m. Also, the site where a facility is located is 

assumed to be covered by the facility, that is, 𝑦𝑗𝑚 = 1 if j = m.  

(ii) Each DC will have a designed capacity, represented by 𝐶𝐴𝑃𝑗
𝑚𝑎𝑥, and actual storage capacity (capj) 

is determined by demands in the supply chain. Thus, the storage capacity cannot exceed the 

designed capacity. 

(iii) Each DC follows a periodic review base-stock inventory policy with zero lead time for simplicity. 

DCs place a replenishment order at the beginning of every period and starts with the base-stock 

level at the beginning of the period. 

(iv) When a DC is disrupted, it becomes inoperable/unavailable.  As a result, a disrupted DC can’t 

cover any DPs.   

(v) Each DC has enough delivery capacities so that it can deliver the items to each DP directly.  

(vi) A disruption event of each DC is independent. 

 

Mathematical Model without EBS 

 

We first present a traditional FLA (TFLA) mathematical model without any EBS. We assume that the 

supply chain consists of DCs and DPs without any facility disruption. Thus, all DCs located by the FLA 

model work as PSFs. Note that this is a capacitated FLA model, and the model will identify locations and 

allocations when all capacity constraints are met. Later, we will also use the TFLA model to see what 

would happen to the supply chain if a disruption occurs through what-if analysis. Due to the nature of the 

capacitated constraints, we introduce a fictitious DC with zero probability of disruption, infinite capacity, 

infinite fixed cost, and infinite distance from any site to this fictitious DC. In this way, this fictitious DC 

supplies products to DPs only when all remaining capacity from the regular DCs is fully used and this 

cost is considered as a penalty cost. 

 

The objective function is to minimize the total logistics cost for N periods when there is no EBS, 𝑇𝐿𝐶𝐸𝐵𝑆̅̅ ̅̅ ̅̅ , 

which consists of the amortized fixed cost of locating and operating facilities and cost for storage capacity 

(terms in the first parenthesis), the transportation/shipping cost from PSFs to DPs (2nd term), and inventory 

cost (last term) as shown (1)  

 

𝑇𝐿𝐶𝐸𝐵𝑆̅̅ ̅̅ ̅̅ = (∑ 𝑓𝑗𝐹𝑗𝑗∈𝐶 + ∑ 𝑣𝑗𝑐𝑎𝑝𝑗𝑗∈𝑐 ) + 𝑁 ∑ ∑ 𝑦𝑗𝑚𝐷𝑚𝑑𝑗𝑚𝑐𝑗𝑚𝑚∈𝑃𝑗∈𝐶  + 

 

𝑁 ∑ (𝑐𝑎𝑝𝑗 − 0.5 ∑ 𝑦𝑗𝑚𝐷𝑚𝑑𝑗𝑚𝑚∈𝑃 )𝑗∈𝐶 ℎ𝑗,    (1) 

 

Thus, the TFLA model without EBS is formulated as follows: 

 

minimize 𝑇𝐿𝐶𝐸𝐵𝑆̅̅ ̅̅ ̅̅  

∑ 𝑦𝑗𝑚

𝑗∈𝐶

= 1,        ∀𝑚 ∈ 𝑃                                                                                                              (2) 

∑ 𝐹𝑗

𝑗∈𝐶

≤ 𝐹𝑚𝑎𝑥,                                                                                                                                 (3) 

𝑐𝑎𝑝𝑗 ≤ 𝐹𝑗  𝐶𝐴𝑃𝑗
𝑚𝑎𝑥,       ∀𝑗 ∈ 𝐶                                                                                                    (4) 
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∑ 𝐷𝑚𝑦𝑗𝑚

𝑚∈𝑃

≤  𝑐𝑎𝑝𝑗 , ∀𝑗 ∈ 𝐶                                                                                                  (5) 

𝑦𝑗𝑚 ≤ 𝐹𝑗 , ∀𝑗 𝑎𝑛𝑑 ∀𝑚 ∈ 𝑀                                                                                                  (6) 

 

Constraints (2) make certain that each site is covered by one or more DCs, allowing multiple sourcing. 

Constraints (3) define the maximum number of DCs to be built.  Constraints (4) ensure that storage 

capacity at each DC should be less than or equal to the design capacity when it is built. Constraints (5) 

ensure that each DP can only be covered by DC within DC’s storage capacity. Constraints (6) indicate 

that each DP is covered by DC j only when DC is available/built at site j. 

 

The TFLA model without EBS provides the least expensive supply chain network and storage capacity at 

each DC without any disruptions. Each DC, in this case of no disruptions, plays the role of PSF since it 

supplies to its designated DPs. 

 

Mathematical Model with EBS 

 

Now, a two-stage stochastic model is considered to incorporate disruption scenarios of DCs into the supply 

chain for resilience. We first consider a number of discrete scenarios which explain disruption risks for 

DCs, and the two-stage stochastic model uses this information as input data. For this reason, the stochastic 

model is called the scenario-based FLA model (SBFLA). We can calculate the probability where each 

random scenario occurs using 𝑝𝑗 , risk probability of DC’s being disrupted at site j. The set of scenarios 

denoted by S represents all unique combinations of disruptions of DCs. Thus, the total number of scenarios 

is equal to K = |2𝐹𝑚𝑎𝑥
|. Each scenario s ∈ 𝑆 consists of a unique combination of DCs disrupted. If E 

represents a set of disruption events, the disruption probability of each scenario is calculated as in Equation 

(7), and it determines the potential availability of DCs: 

 

𝜋𝑠 = ∏ 𝑝𝑗 ∏ (1 − 𝑝𝑗)𝑗∉𝐸𝑗∈𝐸       (7) 

The objective function is to minimize the TLC under all scenarios, TLCEBS, for N periods, given by 

equation (8). Again, it consists of the amortized fixed cost of locating and operating facilities and cost for 

storage capacity (terms in the first parenthesis), the transportation/shipping cost from DCs to DPs (2nd 

term), and inventory cost (last term). The structure of the two-stage in the SBFLA model is explained as 

follows: The first stage decisions are involved with the selection of DCs, 𝐹𝑗, and their capacity, 𝑐𝑎𝑝𝑗, from 

the set of candidates set, C. The second-stage decision involves allocating capacity to DP m,  𝑦𝑠𝑗𝑚 , 

according to the availability of DCs determined by the scenarios, 𝑠 ∈ 𝑆. 

 

𝑇𝐿𝐶𝐸𝐵𝑆 = (∑ 𝑓𝑗𝐹𝑗𝑗∈𝐶 + ∑ 𝑣𝑗𝑐𝑎𝑝𝑗𝑗∈𝑐 ) + 𝑁 ∑ 𝜋𝑠 ∑ ∑ 𝑦𝑠𝑗𝑚𝐷𝑚𝑑𝑗𝑚𝑐𝑗𝑚𝑚∈𝑃𝑗∈𝐶𝑠∈𝑆  + 

 

𝑁 ∑ 𝜋𝑠 ∑ ℎ𝑗(𝑐𝑎𝑝𝑗 − 0.5 ∑ 𝑦𝑠𝑗𝑚𝐷𝑚𝑑𝑗𝑚𝑚∈𝑃 )𝑗∈𝐶𝑠∈𝑆 ,  (8) 

 

Thus, the SBFLA model is formulated as follows: 

 

minimize TLCEBS 
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∑ 𝑦𝑠𝑗𝑚

𝑗∈𝐶

= 1,        ∀𝑚 ∈ 𝑃, ∀𝑠 ∈ 𝑆                                                                                              (9) 

∑ 𝐹𝑗

𝑗∈𝐶

≤ 𝐹𝑚𝑎𝑥,                                                                                                                              (10) 

𝑐𝑎𝑝𝑗 ≤ 𝐹𝑗  𝐶𝐴𝑃𝑗
𝑚𝑎𝑥 ,       ∀𝑗 ∈ 𝐶                                                                                                  (11) 

∑ 𝐷𝑚𝑦𝑠𝑗𝑚

𝑚∈𝑃

≤  𝑇𝑠𝑗𝑐𝑎𝑝𝑗 , ∀𝑗 ∈ 𝐶, ∀𝑠 ∈ 𝑆                                                                         (12) 

 

Constraints (9) make certain that each site is covered by one or more DCs at scenario s, explaining the 

multiple sourcing again.  Constraints (10) and (11) are the same as before in the TFLA model without 

EBS. Constraints (12) ensure that assigning products from DC j to DP m at each scenario s can be done 

only when the DC with enough storage capacity for the demand at DP m is available. 

 

Note that the TFLA model without EBS identifies PSFs for all DPs. As being assumed, if a disruption 

occurs at any DC j, the demands of DPs covered by the DC j cannot be satisfied since there is no EBS. 

The TFLA model without EBS focuses on a more efficient supply chain since it attempts to satisfy all 

demands with the minimum cost. In contrast, the SBFLA model with EBS focuses on a more resilient 

supply chain with extra storage capacity at each DC through SSF for DP m when its PSF is disrupted.    

 

After obtaining solutions from two mathematical models, we can get the following information: For both 

models, TLC consists of two components, TLC from regular DCs and TLC from a fictitious DC. That is, 

 

TLC = 𝑇𝐿𝐶𝑗∈𝐶𝑅
+ 𝑇𝐿𝐶𝑗∈𝐶𝐹

     (13) 

 

In the same reasoning, Fill Rate (FR) for both problems are calculated at the regular DCs only, which is 

given by  

 

𝐹𝑅 =  
∑ 𝑐𝑎𝑝𝑗𝑗∈𝐶𝑅

∑ 𝐷𝑚𝑚
                                                                                  (14) 

CASE STUDY AND OBSERVATIONS 

 

To demonstrate the applicability of the frameworks presented, we conduct a case study using major 

disaster declaration records in South Carolina (SC) that Hong and Jeong [5] use. When historic flooding 

damaged SC in October 2015, the Federal Emergency Management Agency (FEMA) opened disaster 

recovery centers (DRCs) in several SC counties to help SC flood survivors. We use the problem of locating 

DRCs in SC as our case study. Forty-six (46) counties are clustered based on proximity and populations 

into twenty counties. Then, one city from each clustered county based on a centroid approach was chosen.  

We assume that all population within the clustered county exists in that city.  The distance between these 

cities is considered to be the distance between counties. We assume that when a major disaster is declared, 

the DRC in that county is not available due to the damaged facility. Based on the historical record from 

the FEMA database and the assumption, the risk probability for each site is calculated in Table 1. The four 

sites–Charleston, Columbia, Florence, and Greenville–are the candidates for DRC, and the fixed 

investment costs are given in Table 1. For the case study, the hypothetically pre-determined input 
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parameters are in Table 2.  As shown in Table 6, we consider 16 DRC disruption scenarios with their 

probabilities, calculated from Table 1. 

 

Table 1. Data for DRC location-allocation  

 
No City County POP, Dm (K) pi Fi ($K) DRC No 

1 Anderson Anderson/Oconee/Pickens 373 0.1250   

2 Beaufort Beaufort/Jasper 187 0.0630   

3 Bennettsville Marlboro/Darlington/Chesterfield 96 0.3750   

4 Conway Horry 269 0.3750   

5 Georgetown Georgetown/Williamsburg 93 0.4380   

6 Greenwood Greenwood/Abbeville 92 0.1250   

7 Hampton Hampton/Allendale 33 0.1880   
8 Lexington Lexington/Newberry/Saluda 318 0.3130   

9 McCormick McCormick/Edgefield 35 0.2500   

10 Moncks Corner Berkeley 178 0.3130   

11 Orangeburg Orangeburg/Bamberg/Calhoun 123 0.3750   

12 Rock Hill York/Chester/Lancaster 321 0.3130   

13 Spartanburg Spartanburg/Cherokee/Union 367 0.3130   

14 Sumter Sumter/Clarendon/Lee 157 0.3750   

15 Walterboro Colleton/Dorchester 135 0.2500   

16 Aiken Aiken/Barnwell 184 0.3130   

17 Charleston Charleston 350 0.2500 5,000 1 

18 Columbia Richland/Fairfield/Kershaw 461 0.3750 5,000 2 

19 Florence Florence/Dillon/Marion 203 0.4380 5,000 3 
20 Greenville Greenville/Laurens 521 0.1250 5,000 4 

21 Fictitious DC  0 0 100,000 5 

 

Table 2.  Input data used for the case study 

 
Symbol Meaning Value 

𝑐𝑗𝑚 Cost of shipping one unit of demand per mile from DRC j to site m  $0.10, ∀𝑗 𝑎𝑛𝑑 𝑚 

𝐶𝐴𝑃𝑗
𝑚𝑎𝑥 Designed capacity for DRC j 2,500, ∀𝑗 

ℎ𝑗 Holding cost per item per unit time at DRC j  $5.00, ∀𝑗 

𝐹𝑚𝑎𝑥 Maximum number of DRCs to be built 5 

𝑣𝑗  Cost per capacity $50, ∀𝑗 

 

Table 3.  Scenarios with their occurrence probability 

 
No (s) Charleston (1) Columbia (2) Florence (3) Greenville (4) Fictitious (5) Probability (𝜋𝑠) 

1 1 1 1 1 1 0.230507813 

2 1 1 1 0 1 0.032929688 
3 1 1 0 1 1 0.179648438 

4 1 1 0 0 1 0.025664063 

5 1 0 1 1 1 0.138304688 
6 1 0 1 0 1 0.019757813 

7 1 0 0 1 1 0.107789063 

8 1 0 0 0 1 0.015398438 
9 0 1 1 1 1 0.076835938 

10 0 1 1 0 1 0.010976563 

11 0 1 0 1 1 0.059882813 
12 0 1 0 0 1 0.008554688 

13 0 0 1 1 1 0.046101563 

14 0 0 1 0 1 0.006585938 
15 0 0 0 1 1 0.035929688 

16 0 0 0 0 1 0.005132813 

 

By solving the TFLA model without EBS given in (1)-(6), we obtain the PSF for DP and the storage 

capacity at PSF. Then, we solve the SBFLA model with EBS in (8)-(12) and list the results in Table 4.  

The PSF-SSFs obtained from the two models are listed in Appendix A. Note that PSFs obtained from the 

scenario s1 are identical to the result from TFLA model without EBS since s1 assumes that there is no 

disruption. In Appendix A, the four scenarios–s8, s14, s15, and s16–where three DCs experience 
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disruption trigger the fictitious DC due to the lack of capacity in the regular DCs, generating the penalty 

costs. Further, some DPs such as Rock Hill in s1 and Aiken in s4 have multiple SSFs due to the nature of 

multiple sourcing. 

 

Table 4.  Results from TFLA and SBFLA models 

 

 TFLA SBFLA 
Difference 

(SBFLA-TFLA) 

Percentage (%) 

(TFLA/SBFLA) 

TLC  1,496,557 ND 9,067,984 7,571,426 17 

𝑻𝑳𝑪𝒋∈𝑪𝑹
 1,496,557 ND 3,459,100 1,962,542 43 

𝑻𝑳𝑪𝒋∈𝑪𝑭
 0 ND 5,608,884 5,608,884 0 

Storage 

Capacity 

4,496  

[976, 1,407, 725, 1,388] 

 9,496  
[2,500, 2,500, 1,996, 

2,500] 

500 
[1,524, 1,093, 1,271, 

1,112] 

47 

FR (%) 100/72 ND*1/DR*2 96.5   

Demand 

Satisfied 
3,233±991*3 

DR 
4,337±598   

TLC  34,253,378 DR 9,067,984 -25,185,393 378 

𝑻𝑳𝑪𝒋∈𝑪𝑹
 1,064,674 DR 3,459,100 2,394,425 31 

𝑻𝑳𝑪𝒋∈𝑪𝑭
 33,188,703 DR 5,608,884 -27,579,819 591 

*1ND: no disruption assumed; *2DR: disruption considered; mean ± standard deviation 

 

In Table 4, the TFLA model without EBS is executed two times–without disruptions and with disruptions 

for what-if analysis. Without disruption, TLC is the minimum ($1,496,557) with a 100% fill rate with 

4,496 total storage capacity. With disruption as a part of what-if analysis, the model is executed 16 times 

according to the disruption scenarios in Table 3.  We observe that the resulting expected TLC and the fill 

rate turn out to be $34,253,378 and 72%, respectively. Whenever a DC is unavailable, that DC is replaced 

by the fictitious DC, generating penalty cost. With the disruption, the expected TLC is much higher than 

any other case due to the high penalty cost. In Figure 2, we differentiate TLC from regular DCs, TLC(pure), 

from TLC the fictitious DC, TLC(fictitious) and see that TFLA is really vulnerable to disruption while 

the SBFLA is resilient.  

 

Figure 2. Comparison of Cost for Models 

 

 
 

TFLA without
Disruption

TFLA with
Disruption

SBFLA

TLC(pure) $1,496,558 $1,064,674 $3,459,100

TLC(fictitious) $- $33,188,704 $5,608,884

$1,496,558 $1,064,674 

$3,459,100 

$-

$33,188,704 

$5,608,884 

 $-

 $5,000,000

 $10,000,000

 $15,000,000

 $20,000,000

 $25,000,000

 $30,000,000

 $35,000,000

TLC(pure)

TLC(fictitious)
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The resulting TLC is 378% of that in SBLFA. Further, the fill rate reduces to 72% from 100% even with 

higher capacity variation (3233±991). The SBFLA model with EBS requires $9,067,984 with high storage 

capacity (9,496) and yields a high fill rate of 96.5%. It also generates some penalty costs due to the 

scenarios–s8, s14, s15, and s16. Note that the difference in capacity between the two models is the extra 

capacity (500) required to improve supply chain resilience. In Figure 3, we compare TFLA to SBFLA in 

terms of TLC and capacity, demonstrating the robust performance of SBFLA with EBS over TFLA 

without EBS. We can see that SBFLA’s resilience is much higher than the original TFLA without EBS. 

 

Figure 3. Storage Capacity (X) vs. TLC (Y) 

 

 
The number in the () represents the fill rate 

 

CONCLUSIONS 

 

Using the traditional facility location-allocation (TFLA) model and the scenario-based facility location-

allocation (SBFLA) model, this paper presents a framework to design the resilient supply chain with the 

emergency backup supply (EBS) under the risk of facility disruptions. In this study, EBS consists of the 

primal supplying facilities (PSFs) and the designated secondary supplying facilities (SSFs) for each 

demand point (DP). The extra capacity enhances the resilience, which allows an SSF to cover its 

designated DPs whose PSF can’t function to satisfy the demands due to disruptions.  

 

Through the case study using actual major disaster records in South Carolina, we demonstrate the 

applicability of our proposed framework. We compare the performance of the TFLA model without EBS 

to that of the SBFLA model with EBS. From the numerical results, the TFLA model without EBS 

generates the lowest TLC and the highest fill rate if there is no disruption. In contrast, under facility 

disruption, its expected TLC in TFLA without EBS is much higher than the TLC in SBFLA with EBS due 

to high penalty costs for the uncovered sites (378%). We also identify that the robust performance of 

SBFLA is achieved by adding extra storage capacity (500), covering all scenarios, generating a higher fill 

rate (96.5%). The study provides a significant managerial insight from the risk management perspective, 

showing that they should consider the disruption risk in the design phase to save potential costs and build 

resilience. 

 

The limitations of this study come from the assumption of delivery from the supplying facilities to the 

affected sites. If the number of vehicles for delivery is limited, the constraints for vehicle routing cases 

should be addressed in formulating the mathematical programming model for future research. 
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APPENDIX  PSF-SSF for each DP from SBFLA model 

 
  s1 s2 s3 s4 s5 s6 s7 s8* s9 s10 s11 s12 s13 s14* s15* s16* 

No City PSF SSF SSF SSF SSF SSF SSF SSF SSF SSF SSF SSF SSF SSF SSF SSF 

1 Anderson Greenville Columbia  Columbia  Charleston  Fictitious  Columbia  Fictitious  Fictitious  Fictitious 

2 Beaufort Charleston        Columbia Florence Columbia Fictitious Florence Fictitious Fictitious Fictitious 

3 Bennettsville Florence  Columbia Charleston   Charleston Fictitious   Columbia Fictitious   Fictitious Fictitious 

4 Conway Florence  Charleston Charleston   Charleston Charleston   Columbia Fictitious   Fictitious Fictitious 

5 Georgetown Charleston        Florence Florence Columbia Fictitious Florence Florence Fictitious Fictitious 

6 Greenwood Greenville     Charleston           

7 Hampton Charleston 
       Columbia 

Columbia, 

Florence Columbia Columbia Florence Fictitious Fictitious Fictitious 

8 Lexington Columbia 
   

Florence Charleston 
Greenville Charleston   

Columbia, 

Greenville  Greenville Florence Greenville Fictitious 

9 McCormick Greenville Columbia  Columbia  Charleston  Fictitious  Columbia  Columbia  Fictitious  Fictitious 

10 
Moncks 

Corner 
Charleston 

       Florence Florence Columbia Columbia Florence Florence Fictitious Fictitious 

11 Orangeburg Columbia   Charleston Charleston Charleston Charleston Charleston     Florence Florence Fictitious Fictitious 

12 Rock Hill Columbia 
Columbia, 

Florence   
Greenville Florence 

Greenville Fictitious  Florence Greenville  Greenville 

Florence, 

fictitious Greenville Fictitious 

13 Spartanburg Greenville Columbia 
 

Columbia 
 Florence  Fictitious  Columbia  

Columbia, 

Fictitious  Fictitious  Fictitious 

14 Sumter Florence  Columbia Charleston   Charleston Charleston   Columbia Columbia   Fictitious Fictitious 

15 Walterboro Charleston        Columbia Florence Columbia Columbia Florence Fictitious Fictitious Fictitious 

16 Aiken Columbia 
 

 
Charleston, 

Columbia 
Greenville Charleston 

Greenville Fictitious   Greenville  Greenville Fictitious 

Greenville, 

fictitious Fictitious 

17 Charleston Charleston        Columbia Florence Columbia Fictitious Florence Fictitious Fictitious Fictitious 

18 Columbia Columbia 
   

Florence Florence 
Charleston, 

Greenville Charleston     

Florence, 

Greenville Florence Greenville Fictitious 

19 Florence Florence 
 

Columbia Charleston 
  Charleston 

Charleston, 

Fictitious   Columbia Columbia   Fictitious Fictitious 

20 Greenville Greenville Columbia 
 

Columbia 
 

Charleston, 

Florence  Fictitious  Columbia  Fictitious  Fictitious  Fictitious 

21 Fictitious Charleston                     Columbia   Florence Greenville Fictitious 

*
scenarios where penalty cost occurs due to lack of capacity 
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