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ABSTRACT 
 
Pedestrians are among the most unsafe and vulnerable road users in terms of traffic crashes. 
Consequently, many methods including various tree-based models are used frequently the explore 
variables surrounding pedestrian safety. Unfortunately, little research is dedicated to evaluating tree-
based models’ comparative performances. To this end, five years of pedestrian-related crash data were 
collected to compare the predictive capabilities of injury severity between four distinct tree-based 
models: Bagging, Boosting, Random Forest, and the relatively new Rotation Forest; using alternative 
evaluation criteria, including in-sample and out-of-sample performance evaluations. The results 
indicate each tree-based model possesses a unique set of benefits and drawbacks. 
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INTRODUCTION 
 
Pedestrians are considered to be the most unsafe and vulnerable road users from the perspective of 
traffic crashes [29]. In the United States, 6590 pedestrian fatalities and around 70,000 injuries were 
reported in 2019 [10]. Furthermore, the number of pedestrians deaths in 2019 was projected to reach 
the highest level since 1988. These statistics demonstrate the apparent need to further explore the 
effects of numerous different factors on pedestrian crashes to properly implement the appropriate 
policies and strategies to improve pedestrian safety. Therefore, a plethora of literature has been 
published focusing on the various factors that affect pedestrian injury severities such as roadway 
geometry [23] [34], pedestrian behavior [6], as well as social and demographic features [17] [37] to 
name a few. 
 
Numerous statistical models have been utilized to evaluate the significant factors of pedestrian-related 
crash severities due to the wide selection of models to better analyze different types of data, the ability 
to overcome missing data, as well as the numerous model criteria available [1] [24] [39]. Different 
models will vary in terms of scale through the use of nominal and ordinal scales [4] [8], logit and probit 
regression [9] [25], binary and multinomial categorical predictions [3] [35], univariate and multivariate 
numerical predictions [12] [15] and immeasurably more. Despite the benefits that statistical models 
offer, it often lacks predictive capabilities, limitations in the amount of data that can be processed at 
any given time, and its inability to differentiate between relevant and irrelevant data [11] [36]. To 
combat these shortcomings, Machine Learning (ML) has been employed more often in recent years. 
 
As previously stated, ML can handle large sets of data, sort through data more efficiently, and be more 
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accurate than its statistical modeling counterpart. In addition, one key difference between ML and 
statistical modeling is the automation that ML offers due to its ability to learn as it goes on [40]. Many 
ML algorithms have been used in safety literature to evaluate the contributing factors in crash injury 
severities. For example, K-Nearest Neighbor (KNN) has shown promise in real-time detection of a 
vehicle fall event using a smartphone [18]. Another ML algorithm is Naïve Bayes. When paired with 
other algorithms, Naïve Bayes has been proven to increase the overall predictive accuracy [2], as 
shown in a study in 2019 that utilized several ML algorithms along with Naïve Bayes and reported an 
overall accuracy between 92-98% [16]. Furthermore, principal component analysis (PCA) and support 
vector machine (SVM) algorithms are commonly used together to provide more accurate results than 
anyone alone can produce [21] [26]. These previously mentioned ML algorithms have exhibited highly 
accurate predictive results. However, these ML algorithms do not demonstrate the process they 
undergo to achieve said results. For this reason, the use of decision trees is preferred. 
 
Decision Trees have been used extensively as not only does this algorithm aid in understanding the 
process the algorithm utilizes within its process. Decision Trees produce results comparable to SVM's 
predictive capabilities and are better than statistical modeling [13]. Several distinct tree-based models 
are commonly used in the field of traffic safety. The first is known as Random Forest (RF) and has 
been employed to be compared to various other ML algorithms and has been shown to exhibit better 
accuracy [41]. Second, boosting (BOO), both in the form of Adaptive Boosting and Gradient Boosting 
Decision Tree, has shown promise against RF, SVM, and Multi-Layer Perceptron [28] [38]. The Third 
is known as Bootstrap Aggregating or Bagging (BAG) and has been used in systems for real-time 
automated crash notifications and has shown promise in these systems [20]. These decision tree 
algorithms all work great with larger sets of data. However, BAG shortcomings become apparent when 
being used to analyzed smaller sets of data. In 2006, a new algorithm, Rotation Forest, was developed 
to work more efficiently based on feature extraction [27].  
 
Rotation Forest is relatively new; therefore, its applications have yet to be fully understood. In 2007, 
Rotation Forest (ROTF) was tested against the previously mentioned decision trees with a small set of 
data and had revealed itself to produce the highest prediction accuracy [19]. Since then, ROTF has 
been employed in diverse fields of study, including the medical field in cancer research [22] and the 
film industry in developing cameras capable of capturing more details and higher resolutions [40]. 
Despite the benefits ROTF offers, its use in the transportation safety field is minimal to the authors' 
best knowledge. In 2017, a study was conducted to compare the prediction accuracies of ROTF with 
several other ML algorithms and concluded that ROTF is the most accurate [33]. 
 
The primary goal of this study is to compare the performances of RF, BOO, BAG, and the relatively 
new ROFT. The data utilized were collected from the Highway Safety Information System (HSIS) and 
consist of crash data for pedestrians across five years (2010-2014) in California. The performance of 
each tree-based model is assessed by evaluating the sensitivity, specificity, positive-predictive-value, 
and negative-predictive-values for both In-Sample (IS) and Out-Of-Sample (OOS) forecasts. It is 
anticipated that the results of this study will provide crucial insights into the performance of distinct 
tree-based models. 
 

DATA DESCRIPTION 
 
The data used for this study were obtained from HSIS, which collected the data in different raw files 
from California TASAS (Traffic Accident Surveillance and Analysis System). Five years of available 
pedestrian crash data (2010 to 2014) were used to evaluate various tree-based models for crash severity 
analysis. In this study, the pedestrian-related crash data were obtained from three different files linked 
with road, vehicle, and crash characteristics. The data collected from these files have crash number 
along with other factors which include geometric (number of lanes, median type, etc.), traffic (Average 
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Annual Daily Traffic, Design Speed, average lane length, etc.), and driver attributes (race, sex and 
alcohol consumption), and so on. A total of 2869 pedestrian crashes and 53 variables were selected, of 
which 11 are numerical variables, and 42 are categorical variables. The numerical variables and 
categorical variables are listed separately under each characteristic, as shown in Table 1. 
 

TABLE 1. DESCRIPTIVE STATISTICS OF ALL VARIABLES USED IN THE DATASET 
 

Numerical Variables 
Variables Description Minimum Maximum Mean S.D. 
  Roadway Level 

aadt Annual average 
daily traffic 180.00 365000.00 56140.00 66918.94 

desg_spd Design Speed 25.00 70.00 55.20 12.19 

lanewid Average Lane 
Width 8.00 30.00 12.02 1.27 

lshldwid 

Left Shoulder 
Width Roadway 1 
of separate 
Highway 

0.00 80.00 3.29 4.10 

no_lanes Total Number of 
Lanes  2.00 16.00 4.66 2.37 

no_lane1 
Number of Lanes 
Roadway 1 of 
separate Highway   

1.00 12.00 2.00 1.20 

no_lane2 
Number of Lanes 
Roadway 2 of 
separate Highway   

0.00 8.00 2.33 1.20 

pav_wdl 

Left Paved 
Shoulder Width 
Roadway 1 of 
separate Highway  

0.00 22.00 2.80 3.70 

rshldwid 

Right Shoulder 
Width Roadway 1 
of separate 
Highway  

0.00 20.00 7.05 3.53 

surf_wid 

Traveled Way 
Width Roadway 1 
of separate 
Highway  

11.00 144.00 31.78 12.99 

  Crash Level 

numvehs 
Total number of 
vehicles involved 
in the crash  

1.00 8.00 2.15 0.54 

  Vehicle Level 

drv_age 

The age of the 
driver of the 
vehicle involved in 
the crash 

5.00 95.00 42.77 17.27 

Categorical Variables 
Variables Description Details of categories (frequency, percentage) 
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  Roadway Level 
access Access Control  1- No (2073, 72.26%); 2- Partial (117, 4.08%); 3- Full (679, 

23.66%). 
curb1 Curb and 

Landscape  
C- Curb   M- Median   T- Trees    S- Shrub 
1-C. M. (313, 10.91%); 2-C. M. W/T. (198, 6.90%); 3-C. M. 
W/S. (115, 4.01%); 4-Raised Traffic Bar (5, 0.17%); 5-M. W/T. 
(7, 0.24%); 6-M. W/S. (143, 4.98%); 7-N/Curbs/Shrubs (2088, 
72.78%). 

divided Divided Highway  1-Not (775, 27.01%); 2-Divided (2094, 72.99%). 
feat_rg Right Road Border 

Special Feature  
L-Lane   M-Median   A- Auxiliary 
1-L. Transitions (32, 1.12%); 2-Passing or Truck Climbing L. (3, 
0.10%); 3-A. L. (Included in No. Lanes Field) (34, 1.19%); 4-A. 
Lanes (Included in No. Lanes Field) (2, 0.07%); 5-Toll Plaza and 
Approaches (1, 0.03); 6-M. L. Is HOV L. (92, 3.21%); 7-M. 
Lanes Are HOV Lanes (11, 0.38%); 8-No Special Feature (2694, 
93.90%). 

feat_lf Left Road Border 
Special Feature  

L-Lane   M-Median   A- Auxiliary 
1-L. Transitions (39, 1.36%); 2-Passing or Truck Climbing L. (3, 
0.10%); 3-A. L. (Included in No. Lanes Field) (43, 1.49%); 4-A. 
Lanes (Included in No. Lanes Field) (5, 0.17%); 5-Toll Plaza and 
Approaches (1, 0.03%); 6-M. L. Is HOV L. (93, 3.24%); 7-M. 
Lanes Are HOV Lanes (16, 0.56%); 8-No Special Feature (2669, 
93.03%). 

med_var Median Variance  1-Median 100'+, No Variance (25, 0.87%); 2-Element Median 
Width (306, 10.67%); 3-Median Constant Width - No Variance 
(2538, 88.46%). 

rururb Rural/Urban  1-Rural (576, 20.08%);2-Urban (1964, 68.46%); 3-Invalid (329, 
11.47%). 

surf_typ Surface Type 
Roadway 1 of 
separate Highway  

1-PCC, Bridge Deck (51, 1.78%); 2-PCC, Concrete (506, 
17.64%); 3-Unp- Undetermined (4, 0.14%); 4-AC, Base & 
Surface 7" (2184, 76.12%); 5-AC, Base & Surface < 7"(112, 
3.90%); 6-AC, Oiled Earth-Gravel (12, 0.42%). 

medbarty Median Barrier 
Type  

B- Barrier   C- Concrete   G-Guardrail   R- Roadway   M-Median 
1-Cable B. (4, 0.14%); 2-Metal Beam B. (21, 0.70%);3-Metal 
Beam B. Glare Screen (36, 1.25%) ; 4-C. B. (265, 9.24%); 5-C. 
B. Glare Screen (107, 3.73%); 6-Bridge B. Railing (15, 0.52%); 
7-Chain Link Fence (7, 0.24%); 8-G. in M. , Both R. (18, 0.63%); 
9-G. in M. , Left R. ; 10-G. in M. , Right R. (9, 0.31%); 11-Thrie 
Beam B. (7, 0.24%); 12-C. B. , Both Ways, Both Shoulders (86, 
3.00%); 13-C. B. ,Shoulder of Left R. (23, 0.80%); 14-C. B. 
,Shoulder of Right R.(3, 0.10%) ;15-No B. (2257, 78.67%). 

med_type Median Type  U- Undivided   D- Divided   L-Lane   S- Separated   M- Median    
1-U, Not S.(2, 0.07%); 2-U, S.(773, 26.94%); 3-D, Two-Way L-
Turn L. (338, 13.52%) ; 4-D, Continuous L-Turn L. (416, 
14.50%); 5-D, Paved M. (692, 24.20%); 6-D, Unpaved M. (526, 
18.22%); 7-D, S. Grades (25, 0.87%); 8-D, S. Grades With 
Retaining Wall (1, 0.03%); 9-D, Sawtooth (Unpaved) (6, 0.21%); 
10-D, S. Structure (11, 0.38%); 11-D, Railroad(10, 0.35%); 12-D, 
Occasional L. (3, 0.10%); 13-D, Railroad, Bus L. (2, 0.07); 14-D, 
Peak-Hour L.(S) (2, 0.07); 15-D, Other (12, 0.42%). 
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terrain Terrain  1-Flat (1781, 62.08%); 2-Mountainous (242, 8.43%);3-Rolling 
(846, 29.49%). 

func_cls Functional Class 0-Not(10, 0.14%); 1- Rural Principal Arterial With Extension 
Into Urban Area Principal Arterial (2310, 33.40%); 2-Rural 
Principal Arterial With Extension Into Urban Area Minor 
Arterial(1325, 19.16%); 3-Principal Arterial Lying Entirely In 
Urban or Rural Area(2135, 30.87%); 4-Minor Arterial(990, 
14.31%); 5-Major Collector(133, 1.92%); 6-Minor Collector(12, 
0.17%) 

  Crash Level 
acctype Type-of-Collision  1-Head-On(61, 2.13%);2-Sideswipe(296, 10.32%); 3-Rear-

End(170, 5.93%); 4-Broadside(546, 19.03%); 5-Hit Object(19, 
0.66%); 6-Overturned(4, 0.14%); 7-Auto-Pedestrian (1352, 
47.12%); 8-Other(421, 14.67%). 

cause1 Primary Collision 
Factor (DOT)  

1-Influenced of Alcohol (89, 3.10%);2-Following Closely (21, 
0.73%); 3- Failure to Yield (409, 14.26%);4-Improper Turn (338, 
11.78%); 5-Speeding (263, 9.17%); 6-Other Violations (1612, 
56.19%);7-Other Improper Driving (22, 0.77%); 8-Other Than 
Driving (52, 1.81%); 9-Unknown (63, 2.20%). 

hit_run Hit and Run  1- Not Hit and Run (2659, 92.68%); 2- Hit and Run (210, 7.32%) 
hour Crash hours 1- night-time (504, 17.57%); 2-Daytime (2365, 82.43%). 
hwy_grp Highway Group  1-Divided Highway (2094, 72.99%); 2-Undivided Highway (775, 

27.01%). 
inter Intersection Crash  1-Not Intersection (2491, 86.82%); 2-Intersection (378, 13.18%). 
light Light Condition  1-Daylight (1626, 56.67%); 2-Dusk - Dawn (86, 3.00%);3-Dark - 

Street Lights (614, 21.40%); 4-Dark - No Street Lights (527, 
18.39%); 5-Dark - Street Lights Not Functioning (16, 0.56%). 

ped_actn Pedestrian Action  Cing- Crossing   Cwalk- Crosswalk   I- Intersection 
1-No Pedestrian (1486, 51.80%); 2- Cing. in Cwalk. at 
Intersection (265, 9.24%); 3- Cing. Not in Cwalk. (424, 14.78%); 
4-In Road, Including Shoulder (661, 23.04%); 6-Not in Road (33, 
1.15%). 

pop_grp Population Group  1- Less Than 2500 (2, 0.07%); 2-2500 To 10000 (125, 4.36%); 3- 
10000 To 25000 (199, 6.94%); 4- 25000 To 50000 (338, 
11.78%); 5- 50000 To 100000 (446, 15.55%); 6- 100000 To 
250000 (459, 16.00%); 7- Greater Than 250000 (403,14.05%); 8-
Unincorporated (Rural) (897,31.27%) 

rdsurf Road Surface  1-Dry (2686, 93.62%); 2-Wet (166, 5.79%); 3-Snowy, lcy(17, 
0.59%) 

rd_def1 Roadway 
Condition  

1- Holes (10,0.35%);2-Loose Material (8, 0.28%);3-Obstruction 
(18, 0.63%); 4-Construction (52, 1.81%); 5-Other (18, 0.63%); 6-
No Unusual (2763, 96.31%) 

rodwycls Roadway 
Classification  

U- Urban   R- Rural   M- Multilane   N.F-Non-Freeways   D- 
Divided 
1-U. F. (605, 21.09%); 2-U. F. < 4 Lanes (1, 0.03%);3-U. Two 
Lane Roads (327, 11.40%); 4-U. M. D. N. F. (1210, 42.17%); 5-
U. M. Undi. N. F. (146, 5.09%);6-R. F. (72, 2.51%); 7-R. Two L. 
Roads (401, 13.98%);8-R. M. D. N. F. (78, 2.72%); 9-R. M. 
Undi. N. F. (25, 0.87%);10-Others (4, 0.14%) 
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severity Collision Severity  1-Fatal (657, 22.90%); 2-Severe Injury (401, 13.98%); 3-Other 
Visible (895, 31.20%); 4-Complaint of Pain (623, 21.71%); 5-
PDO (293, 10.21%) 

veh_invl Involved in The 
Accident 

1-Pedestrian (1476, 51.45%); 2-Bicycle (1393, 48.55%) 

weather1 Weather 1-Clear (2401,83.69%); 2-Cloudy (359, 12.51%); 3-Raining (76, 
2.65%); 4-Snowing (8, 0.28%); 5-Fog (23, 0.80%); 6-Other 
(1,0.03%); 7-Wind (1,0.03%) 

weekday Day of Week  1- (405, 14.12%); 2- (380, 13.25%); 3- (380, 13.25%); 4- (378, 
13.18%) 
5- (409, 14.26%); 6- (487, 16.97%); 7- (430, 14.99%) 

  Vehicle Level 
celphone Usage of cellphone 

in the vehicle  
1- Handheld (8, 0.28%); 2- Hands Free (31,1.08%); 3- Not (2789, 
97.21%); 4- In Use (1, 0.03%); 5-No Cell Phone/Unknown (40, 
1.39%) 

contrib1 First Associated 
Factor  

1-Vehicle Code Violation (262, 9.13%); 2-Vision Obscurement 
(61, 2.13%); 3-Inattention (88, 3.07%); 4-Stop and Go Traffic 
(22, 0.77%); 5-Enter/Leave Ramp (17, 0.59%); 6-Previous 
Collision (37, 1.29%); 7-Unfamiliar With Road (1, 0.03%); 8-
Defect Vehicle Equipment (9, 0.31%); 9-Uninvolved Vehicle (6, 
0.21%); 10-Other ((16, 0.56%); 11-None Apparent (2347, 
81.81%); 12-Runaway Vehicle (3, 0.10%) 

drv_race Driver Race  1-Asian (193, 6.73%); 2-Black (144, 5.02%); 3-White (740, 
25.79%); 4-Hispanic (191, 6.66%); 5-Other (1601, 55.80%) 

drv_sex Driver Sex  1-Male (1994, 69.50%); 2-Female (875, 30.50%). 
insur Insurance  1-No (87, 3.03%); 2-Yes (2003, 69.82%); 3-Not Applicable (778, 

27.12%);4-Used (1, 0.03%) 
loc_typ1 First Collision 

Location  
1-Beyond Median- Driver's Left (130, 4.53%); 2-Beyond 
Shoulder - Driver's Left (141, 4.91%); 3-Left Shoulder Area (27, 
0.94%); 4-Left Lane (419, 14.60%); 5-Interior Lanes (274, 
9.55%); 6-Right Lane (1339, 46.67%); 7-Right Shoulder Area 
(233, 8.12%); 8-Beyond Shoulder - Driver's Right (139, 4.84%); 
9-Other (152, 5.30%); 10-Not Stated (15, 0.52%) 

miscact1 Movement 
Preceding Accident  

1-Crossing In Crosswalk at Intersection (1, 0.03%);2-Crossing - 
Not In Crosswalk (1, 0.03%); 3-In Roadway - Include Shoulder 
(3, 0.10%); 4-Stopped (67, 2.34%); 5-Proceeding Straight (1944, 
67.76%); 6-Ran Off Road (22, 0.77%); 7-Making Right Turn 
(193, 6.73%); 8-Making Left Turn (166, 5.79%); 9-Making U 
Turn (3, 0.10%); 10-Backing (14, 0.49%); 11-Slowing, Stopping 
(57, 1.99%); 12-Passing Other Vehicle (31, 1.08%); 13-Changing 
Lanes (51, 1.78%); 14-Parking Maneuver (3, 0.10%); 15-
Entering Traffic From Shoulder, Median, Parking Strip Or 
Private Drive (109, 3.80%); 16-Other Unsafe Turning (61, 
2.13%); 17-Crossed Into Opposing Lane (13, 0.45%); 18-Parked 
(8, 0.29%); 19-Merging (6, 0.21%); 20-Traveling Wrong Way 
(58, 2.02%) ; 21-Other (58, 2.02%) 
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object1 First Object Struck  1-Side of Bridge Railing (1, 0.03%); 2-Traffic Sign or Sign Post 
(3, 0.10%) 
3-Guardrail (1, 0.03%); 4-Barrier (2, 0.07); 5-Dike or Curb 
(Including Curb Of Median & A.C. Berm) (8, 0.28%); 6-
Guidepost, Culvert or Mile Post Marker (1, 0.03%); 7-Cut Slope 
or Embankment, Struck From Below (7, 0.24%); 8-Drainage 
Ditch (With or Without Water) (1, 0.03%); 9-Temporary 
Barricades, Cones or Signs (1, 0.03%); 10-Other Object On Road 
(7, 0.24%); 11-Other Object Off Road (3, 0.10%);12-Overturned 
(2, 0.07%); 13-No Object Involved (28, 0.96%); 14-Vehicle 1 to 
9(2804, 97.73%) 

spec_inf Special Information  1-Cell Phone in Use (40, 1.39%); 2- Not in Use (2789, 97.21%);                     
3-None/Unknown (40, 1.39%) 

sobriety Sobriety of the 
driver of this 
vehicle  

1-Not(2624, 91.46%); 2-Drinking, Under Influence (97, 3.38%); 
3-Drinking, Not Under Influence (43, 1.50%); 4-Drinking, 
Impairment Unknown (20, 0.70%); 5-Impairment Unknown (74, 
2.58%); 6-Not Applicable (11, 0.38%) 

vehtype Vehicle Type  1-Truck with 2 Trailers (3, 0.10%); 2-Truck with Tank Trailer (2, 
0.07%); 3-Passenger Car (1564, 54.51%); 4-Passenger Car With 
Trailer (4, 0.14%); 5-Motorcycle (33, 1.15%); 6-Pickup or Panel 
Truck (335, 11.50%); 7-Pickup or Panel Truck With Trailer (16, 
0.56%); 8-Truck or Truck Tractor (32, 1.12%); 9-Truck With 1 
Trailer (68, 2.37%); 10-School Bus (2, 0.07%); 11-Other Bus 
(21, 0.7%); 12-Emergency Vehicle (13, 0.45%); 13-Bicycle (765, 
26.66%); 14-Other Motor Vehicle (6, 0.21%); 15-Pedestrian (5, 
0.17%) 

Note: S.D. represents standard deviation. 
 
It is important to note that while the categories for severity presented in Table 1 are part of the initial 
dataset, these categories were reorganized to improve overall model performance. A severity of 1 and 
2 are organized into a single category as more severe, “1” whereas severity levels 3, 4, and PDO are 
classified as less severe, “0”. These new severity levels will be used to evaluate each models’ 
performance. A correlation analysis was performed to determine which variables were closely 
correlated, as shown in Figure 1.  
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FIGURE 1. CORRELATION PLOT OF NUMERICAL VARIABLES IN THE CRASH DATA 

USING PRINCIPAL COMPONENT ANALYSIS 
 
Figure 1 illustrates the plot for displaying the correlation between numerical variables by using PCA. 
Only one variable, driver age (drv_age), is negatively correlated, which is positioned opposite to other 
variables. All other variables (except drive age) are positively correlated. The variables that are away 
from the origin show a high significance, and the grouped variables indicate a strong correlation with 
one other. 
 
Upon closer inspection, it appears that the total number of lanes(no_lanes), number of numbers RD1 
(no_lane1), and number of lanes RD 2 (no_lane2) are closely compacted to each other and are away 
from the origin. On the other hand, other variables such as the number of vehicles (numvehs), left 
shoulder width RD1(ishldwid), and traveled way width (surf_wid) are group together and are near to 
the origin. 
 

METHODOLOGY 
 
This study utilizes machine learning to generate several tree-based models to analyze accident severity 
involving pedestrian casualties. Following the generation of these tree-based models, several criteria 
were implemented to evaluate the efficacy of each model including sensitivity, specificity, positive-
predictive-value, and negative-predictive-values. In an effort to reduce bias, these values were 
generated a total of ten times using both In-Sample and Out-Of-Sample forecasting methods. 
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Tree-Based Methods 
 
Most tree-based models begin with a single node that splits off into two branches; the directions of 
each branch are determined by a single variable’s criteria that the model itself determines. This process 
repeats itself until a terminal node is reached, representing the model's decision itself. As a result, tree-
based models provide accurate and easy to understand results. However, as data become more complex 
with more variables, decision trees become biased and inaccurate. A simple tree for the data used is 
shown in Figure 2, where each branch represents true and false statements. At each node, the resulting 
branch that goes left is false, while the branch that goes right is true.  
 
 

  
FIGURE 2. ILLUSTRATION OF AN UNPRUNED CLASSIFICATION TREE FOR THE 

CRASH DATASET 
 
Specific pruning methods are used to prevent decision trees from becoming biased by reducing the 
level of variance. Pruning is the process that reduces the size of decision trees by removing non-
significant variables to reduce the complexity of the tree. Boosting, also known as Gradient Boosting, 
is a method of pruning that combines a large number of decision trees by slowly learning to narrow 
down significant variables. A process of cross-validation determines the number of trees produced (B) 
to ensure that overfitting does not occur. In this experiment, B was chosen to be 5000. The shrinkage 
factor (λ) determines the rate at which the model narrows down significant variables, thus directly 
controlling the rate at which boosting learns. The number of branches that expel out of each node is 
set to two for this experiment, and the remaining tree-based models also utilized two branches at each 
node. Equation 1 describes the learning model that boosting uses to make predictions. Note that b 
represents the ordinal number of the boosted tree generated [14]. 
 

 
𝑓𝑓(𝑥𝑥) = �λ𝑓𝑓𝑏𝑏(𝑥𝑥)

𝐵𝐵

𝑏𝑏=1

 (1) 

 
Bagging, also known as bootstrap aggregation, is similar to boosting in which it also combines a large 
number of decision trees. Bagging reduces the variance by averaging a set of observations by 
generating a new prediction model and then averaging the resulting prediction. The number of bags 
generated in the model divides the data into subsets, after which the model runs; the number of bags 
generated in this experiment is set to 13. Like Boosting, the number of trees must also be specified; 25 
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trees were generated in the investigation. The equation representing the learning model that bagging 
uses to make predictions is shown in Equation 2 [14]. 
 

 
𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏(𝑥𝑥) =

1
𝐵𝐵
�λ𝑓𝑓∗𝑏𝑏(𝑥𝑥)
𝐵𝐵

𝑏𝑏=1

 (2) 

 
Random Forest is another tree-based model that is similar to bagging, with one notable exception. 
Random Forest decorates the trees generated by only considering a set number of predictors, or 
variables, at each tree. Therefore, instead of developing trees that look similar to one another, it 
generates trees by being forced to use a random set of predictors thus, decorrelating each tree and 
making its predictions more accurate [14]. Not including a set number of “bags” or trees that the model 
must generate uses a variety of predictors when creating each tree. The number of predictors used at 
each tree split can be calculated using Equation 3: 
 

 𝑚𝑚 = �𝑝𝑝 (3) 
 
Where m is the number of predictors within the dataset and p is the total number of predictors utilized 
within each tree generated by Random Forest. The new model then generates a random decision based 
on what each tree suggests. 
 
Rotation forest is a relatively new ensemble method used to formulate accurate, efficient, and diverse 
classifiers compared to various existing algorithms [31]. Rotation forest promotes diversity by 
employing PCA that performs feature extraction for each base classifier. Assuming that x = [x1,…,xn]T 
be a data point, and X be the data set containing N training samples and n features in the form of N X 
n matrix. Consider Y = [y1,…,yN]T as a vector for class labels where yj obtains values from the set of 
class labels {w1, w2,…, wc}. The various classifiers in the ensemble are denoted by {D1, D2,…,DL} 
and feature set by F. For most of the ensemble techniques, L needs to be selected first. To build the 
training set for the classifier Di, the executed steps are shown as follows:  

1. F (feature set) will be divided into K subsets, where K represents the algorithm's parameter. To 
maximize the chance for high diversity, disjoint subsets were chosen such that each feature 
subset contains M = n/K features. 

2. For each subset (denoted by Fi,j, the jth subset for the training set of classifier Di), a randomly 
nonempty subset of classes was selected bootstrap sample of objects were drawn. The 
coefficients of principal components, 𝑎𝑎𝑖𝑖,𝑗𝑗

(1), 𝑎𝑎𝑖𝑖,𝑗𝑗
(2), … ,𝑎𝑎𝑖𝑖,𝑗𝑗

(𝑀𝑀𝑖𝑖) was stored for each size M X 1.  
3. Arranging the vectors with coefficients in a rotation matrix Ri as shown in Equation 4: 

 
 

𝑅𝑅𝑖𝑖 =

⎣
⎢
⎢
⎢
⎢
⎡𝑎𝑎𝑖𝑖,1

(1),𝑎𝑎𝑖𝑖,1
(2) …𝑎𝑎𝑖𝑖,1

(𝑀𝑀1) [0] ⋯         [0]                

[0] 𝑎𝑎𝑖𝑖,2
(1),𝑎𝑎𝑖𝑖,2

(2) …𝑎𝑎𝑖𝑖,2
(𝑀𝑀2) ⋯         [0]               

⋮
[0]

⋮
[0]

⋱            ⋮                
𝑎𝑎𝑖𝑖,2

(1),𝑎𝑎𝑖𝑖,2
(2) …𝑎𝑎𝑖𝑖,2

(𝑀𝑀2)
⎦
⎥
⎥
⎥
⎥
⎤

 (4) 

 
The Rotation matrix will have dimensionality n× ∑ 𝑀𝑀𝑗𝑗𝑗𝑗 . PCA on the subset of classes was performed 
to extract the significant features. Equation 5 demonstrates how rotation forest classifies each 
prediction [30]. 
 

 
𝜇𝜇𝑗𝑗(𝑥𝑥) =

1
𝐿𝐿
�𝑑𝑑𝑖𝑖,𝑗𝑗(𝑥𝑥𝑅𝑅𝑖𝑖𝑏𝑏), 𝑗𝑗 = 1, … , 𝑐𝑐.
𝐿𝐿

𝑖𝑖=1

 (5) 
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It is important to note that L represents the number of classifiers in the ensemble generated in the 
induvial decision tree. 
 
Evaluation Criteria 
 
To effectively compare the predictive capabilities of each tree-based model, the Sensitivity, 
Specificity, Positive Predictive Values (PPV), and Negative Predictive Values (NPV) are calculated. 
This is accomplished by first recording the total number of true positives (TP), true negatives (TN), 
false positives (FP), false negatives (FN) are recorded following the results generated from each tree-
based model. A summary of how TP, TN, FP, and FN are calculated are shown in Table 2. 
 
TABLE 2. SUMMARY OF HOW TRUE POSITIVE, TRUE NEGATIVE, FALSE POSITIVE, 

AND FALSE NEGATIVES ARE CALCULATED 
 

 Actual Outcome Predicted Outcome 
TP 1 1 
TN 0 0 
FP 0 1 
FN 1 0 

 
The total number of TP, TN, FP, and FN are recorded and used to calculate the Sensitivity, Specificity, 
Positive Predictive Values (PPV), and Negative Predictive Values (NPV) using Equations 6-9 [32]. 
 

 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑆𝑆𝑖𝑖𝑆𝑆𝑖𝑖𝑆𝑆𝑆𝑆 =

𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

 (6) 

 
𝑆𝑆𝑝𝑝𝑆𝑆𝑐𝑐𝑖𝑖𝑓𝑓𝑖𝑖𝑐𝑐𝑖𝑖𝑆𝑆𝑆𝑆 =

𝑇𝑇𝐹𝐹
𝑇𝑇𝐹𝐹 + 𝐹𝐹𝑇𝑇

 (7) 

 
𝑇𝑇𝑇𝑇𝑃𝑃 =

𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇

 (8) 

 
𝐹𝐹𝑇𝑇𝑃𝑃 =

𝑇𝑇𝐹𝐹
𝑇𝑇𝐹𝐹 + 𝐹𝐹𝐹𝐹

 (9) 

 
To compare each model and to reduce bias, each tree-based model was generated 10 times. During 
each round of model generation, a random half of the data is used. This allows for each model to 
generate 10 rounds for In-Sample (IS) and Out-Of-Sample (OOS) forecasting separately. 
 

RESULTS 
 
As previously stated, each tree-based model had been generated 10 times to compensate for bias in the 
data. The total number of true positives, true negatives, false positives, and false negatives were 
recorded. For each time or round (R), a random half of the data were used in distinct techniques, and 
the same half data were used to estimate the IS to self-validate the model. The remaining unused half 
data were used to cross-validate the model by OOS testing. The results provided in Tables 3-4 illustrate 
the probabilities of crash severities. With the cut-off value of 0.50, which means a probability of 0.50 
or higher would result in a severity level of 1. In contrast, a probability less than 0.49 would result in 
a severity level of 0. The sensitivity, specificity, PPV, and NPV of each round with IS testing are 
shown in Table 3. 
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TABLE 3. RESULTS OF SENSITIVITY, SPECIFICITY, POSITIVE PREDICTIVE 
VALUES, AND NEGATIVE PREDICTIVE VALUES BASED ON IN-SAMPLE 

PERFORMANCE EVALUATION OF DIFFERENT ROUNDS OF MODEL-RUNNING AND 
AVERAGES AMONG DIFFERENT ROUNDS 

 
 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 AVE 

sen_rotf_in 0.69 0.67 0.7 0.76 0.71 0.69 0.74 0.71 0.66 0.65 0.70 
spc_rotf_in 0.89 0.89 0.9 0.88 0.9 0.89 0.86 0.89 0.89 0.89 0.89 
ppv_rotf_in 0.22 0.21 0.19 0.2 0.19 0.2 0.23 0.21 0.21 0.22 0.21 
npv_rotf_in 0.84 0.82 0.83 0.86 0.83 0.82 0.84 0.83 0.81 0.82 0.83 
sen_ranf_in 0.99 0.99 1 0.99 0.99 1 0.99 1 0.99 1 0.99 
spc_ranf_in 1 1 1 1 1 0.99 1 0.99 1 1 1.00 
ppv_ranf_in 0 0 0 0 0 0.01 0 0.01 0 0 0.00 
npv_ranf_in 1 1 1 1 0.99 1 0.99 1 1 1 1.00 
sen_boo_in 0.84 0.83 0.85 0.85 0.83 0.85 0.83 0.86 0.84 0.83 0.84 
spc_boo_in 0.93 0.93 0.92 0.93 0.94 0.93 0.93 0.93 0.92 0.93 0.93 
ppv_boo_in 0.13 0.13 0.13 0.12 0.11 0.11 0.12 0.11 0.14 0.13 0.12 
npv_boo_in 0.91 0.9 0.91 0.91 0.9 0.91 0.9 0.91 0.9 0.91 0.91 
sen_bag_in 0.99 0.98 0.98 0.98 0.98 0.98 0.97 0.98 0.99 0.98 0.98 
spc_bag_in 1 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 
ppv_bag_in 0.01 0.02 0.02 0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.01 
npv_bag_in 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.99 

Notes: (1) R1 to R10 represents the 10 rounds that each model had ran. 
(2) AVE represents the average value of all 10 rounds. 
(3) Prefixes “sen”, “spc”, “ppv”, and “npv” represent Sensitivity, Specificity, Positive Predictive 
Values, and Negative Predictive Values, respectively. 
 
Upon closer examination of Table 3, several points of interest are revealed. For starters, all models 
falter in their capabilities in terms of PPV, with Rotation Forest having the highest score at 0.21 and 
Boosting being the second highest at 0.12. In contrast, all models' sensitivity, specificity, and negative 
predictive values show significant improvements among all models. This is especially true with 
Random Forest as it scores a 0.99 with sensitivity and a 1.00 with both Specificity and NPV. Following 
these values, Bagging scores just under Random Forest in these values, followed by Boosting and then 
Rotation Forest scoring the lowest. The OOS testing results with sensitivity, specificity, PPV, and NPV 
of each round are shown in Table 3. 

 
TABLE 4. RESULTS OF SENSITIVITY, SPECIFICITY, POSITIVE PREDICTIVE 

VALUES, AND NEGATIVE PREDICTIVE VALUES BASED ON SAMPLE CROSS-
VALIDATION AND AVERAGES AMONG DIFFERENT ROUNDS 

 

 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 AVE 
sen_rotf_out 0.61 0.65 0.65 0.68 0.68 0.63 0.69 0.67 0.67 0.65 0.66 
spc_rotf_out 0.88 0.86 0.89 0.86 0.87 0.88 0.87 0.86 0.88 0.89 0.87 
ppv_rotf_out 0.24 0.28 0.23 0.26 0.26 0.27 0.25 0.27 0.24 0.23 0.25 
npv_rotf_out 0.79 0.81 0.82 0.83 0.83 0.81 0.84 0.82 0.83 0.81 0.82 
sen_ranf_out 0.69 0.68 0.7 0.69 0.71 0.71 0.7 0.72 0.74 0.71 0.71 
spc_ranf_out 0.88 0.88 0.89 0.87 0.86 0.88 0.89 0.86 0.88 0.88 0.88 
ppv_ranf_out 0.22 0.25 0.22 0.25 0.27 0.24 0.23 0.26 0.23 0.22 0.24 
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Notes: (1) R1 to R10 represents the 10 rounds that each model had ran. 
(2) AVE represents the average value of all 10 rounds. 
(3) Prefixes “sen”, “spc”, “ppv”, and “npv” represent Sensitivity, Specificity, Positive Predictive 
Values, and Negative Predictive Values respectively. 
 
When reviewing Table 4, compared to the PPV present in Table 3, all models perform better, with 
Boosting having the highest score at 0.30 and Rotation Forest and Bagging having a score of 0.25. 
Unfortunately, despite the increased scores of PPV, all other scores are decreased compared to Table 
3. Much like the results of Table 3, Random Forest maintains the highest scores for Sensitivity, 
Specificity, and NPV with 0.71, 0.88, and 0.84, respectively. In terms of sensitivity, Bagging presents 
the second-highest score at 0.69, followed by Boosting at 0.68. Specificity scores present a different 
order, with both Rotation Forest and Bagging having scores at 0.87. Finally, Bagging shows an NPV 
score of 0.83, and both Rotation Forest and Boosting showcasing a score of 0.82. When looking at the 
values of both Table 3 and Table 4, it is clear that each tree-based model provides their unique set of 
benefits and drawbacks. To further understand the similarities and dissimilarities between each tree-
based model, a scatter plot of the average sensitivity and specificity of both IS and OOS are shown in 
Figures 3-4, respectively. 
 

 
Notes: (1) sen-sensitivity; spe-specificity; roft-Rotation Forest; ranf-Random Forest; boo-Boosting; 
bag-Bagging 
(2) The numbers above the main diagonal indicate the correlation coefficients. 
 

npv_ranf_out 0.82 0.83 0.84 0.83 0.84 0.85 0.84 0.85 0.86 0.84 0.84 
sen_boo_out 0.64 0.66 0.7 0.66 0.69 0.66 0.68 0.69 0.69 0.68 0.68 
spc_boo_out 0.85 0.82 0.83 0.87 0.83 0.82 0.83 0.82 0.84 0.84 0.84 
ppv_boo_out 0.28 0.32 0.31 0.26 0.31 0.33 0.31 0.32 0.29 0.28 0.30 
npv_boo_out 0.8 0.81 0.83 0.82 0.83 0.82 0.83 0.83 0.83 0.82 0.82 
sen_bag_out 0.69 0.68 0.7 0.69 0.71 0.7 0.68 0.68 0.71 0.69 0.69 
spc_bag_out 0.89 0.86 0.88 0.87 0.85 0.88 0.88 0.87 0.86 0.88 0.87 
ppv_bag_out 0.21 0.27 0.23 0.25 0.28 0.24 0.24 0.26 0.25 0.22 0.25 
npv_bag_out 0.82 0.83 0.84 0.83 0.84 0.85 0.83 0.83 0.84 0.83 0.83 



14 
 

FIGURE 3. SCATTERPLOT FOR SENSITIVITIES AND SPECIFICITIES OF VARIOUS 
METHODS BASED ON IN-SAMPLE DATA EVALUATION 

 

 
Notes: (1) sen-sensitivity; spe-specificity; roft-Rotation Forest; ranf-Random Forest; boo-Boosting; 
bag-Bagging 
(2) The numbers above the main diagonal indicate the correlation coefficients. 
 

FIGURE 4. SCATTERPLOT FOR SENSITIVITIES AND SPECIFICITIES OF VARIOUS 
METHODS BASED ON OUT-OF-SAMPLE DATA EVALUATION 

 
Figures 3-4 clearly demonstrate the correlation between the Sensitivity and Specificity of each model. 
The diagonal graphs in Figures 3-4 show the overall accuracy of the specific model. The graphs above 
the diagonal represent the correlation between the two models in question. The correlation ranges from 
1 to -1; the closer to 1 that a correlation is, the more correlated the two models were. Likewise, the 
closer to -1, the more negatively correlated the two models are. Finally, the graphs under the diagonal 
graphs represent the significant values of both models in question. Thus, it is possible to understand 
the results of each model and how it relates to the results of other models as well. In addition to using 
OSS and IS to determine the prediction accuracy, the true positive rate vs. the false positive rate can 
be seen in the ROC of Figure 5. 
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FIGURE 5. ROC CURVES AND AVERAGE CALCULATED AUC FOR ROTATION 
FOREST, RANDOM FOREST, BOOSTING, AND BAGGING ANALYSIS 

 
The ROC curve aids in the calculation of determining the optimal cut-off rate for a true or false value. 
Since the variable being test is binary, the baseline prediction is 50% which, on a ROC curve, this 
baseline is represented as a straight line with a slope of 1 and an intercept of 0. Upon closer examination 
of Figure 5, it becomes apparent that the accuracy of rotation forest is on par with random forest and 
bagging. It also shows that rotation forest is more accurate than Boosting. This difference, although 
minor, will create a greater deviation when dealing with larger data sets. Despite this, the average AUC 
has been calculated to be approximately 0.78. This means that the prediction accuracy of all tree-based 
methods combined is roughly 78%, statistically more significant than the baseline prediction accuracy 
that all binary systems have, 50%. Therefore, it is viable to state that Rotation Forest can model 
generation in traffic safety. 
 

CONCLUSIONS 
 
The primary objective of this study was to perform a comparative evaluation between several distinct 
tree-based models in traffic safety, specifically in pedestrian crash severity prediction. Additionally, 
this study proved to be an adequate opportunity to explore the capabilities of a relatively new tree-
based model, Rotation Forest. The pedestrian crash data utilized in this study were obtained from HSIS 
over five years (2010-2014). Four tree-based models, rotation forest, random forest, bagging, and 
boosting, were employed to predict crash severity, with each model running ten times. In each round, 
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the model was used to self-validate in IS testing and cross-validate in OOS testing. After each round, 
the Sensitivity, Specificity, PPV, and NPV are recorded and used to compare the different tree-based 
models' efficacy. Upon closer examination of the results that were described previously, the following 
conclusions and recommendations can be made: 

1) Random Forest is the most accurate when comparing the Sensitivity in both IS and OOS. 
However, when consulting the PPV, Rotation Forest has the highest accuracy for IS 
forecasting. 

2) When consulting the Sensitivity of both IS and OOS, Rotation Forest is closer related across 
both IS and OOS. This is likely attributed to the size of the data used in the experiment. 

3) According to the ROC curve and the resulting average AUC in Figure 5, it is apparent that the 
average accuracy of each tree-based model is 78%, significantly more accurate than the binary 
prediction baseline of 50%.  

The results here show that each tree-based model has their respective benefits and drawbacks in their 
performances. Additionally, the relatively new tree-based model, Rotation Forest, shows promise in 
its ability to predict pedestrian crash severities accurately. Unfortunately, due to the lack of studies 
that utilize Rotation Forest in traffic safety, its potential benefits are still unclear compared to other 
tree-based models. For this reason, it is recommended that future studies compare Rotation Forest, as 
well as Boosting, Bagging, and Random Forest, to other machine learning models such as 
Classification and Regression Trees (CART), Chi-square Automatic Interaction Detection (CHAID), 
or Multivariate Adaptive Regression Spline (MARS). It is also worth noting that modifications to these 
values could yield vastly different results; attention should be paid to modifying the parameters that 
Bagging and Boosting utilize in Equations 1-2. Furthermore, future studies should consider the 
limitations provided by Rotation Forest as the dataset used was heavily filtered to remove all 
observations with missing variables. Since Boosting, Bagging, and Random Forest can operate despite 
these missing variables within observations, a method that allows Rotation Forest to run with these 
impurities with the data could change the Sensitivity, Specificity, PPV, and NPV in both IS and OOS 
validation methods. Finally, future studies should also perform a multi-class prediction rather than a 
binary prediction as it could provide more insight into each tree-based model's benefits and drawbacks.  
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