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ABSTRACT 

 
This paper applies the Center for Disease Control and Prevention's Social Vulnerability Index (SVI) to an 

emergency logistics network (ELN) design problem. A community with a higher SVI should be given a 

higher priority in case of emergency. We propose two SVI-based facility location-allocation (FLA) 

models with a multi-sourcing system–one with a soft SVI constraint by maximizing SVI in the objective 

function and the other with a hard-SVI constraint by considering SVI in the constraint and minimize the 

total logistics costs. The case study analyzes the proposed models' performance and compares them with 

the traditional FLA without the SVI. 

 

Keywords: Emergency logistics networks, social vulnerability index, facility location-allocation, multi-

sourcing system. 

 

INTRODUCTION 

 

The emergency logistics network (ELN) provides relief items such as drinking water, food, and daily 

commodities to lessen people's suffering. The U.S. experienced a historic year of climate disasters in 2007. 

The U.S. was seriously affected by 16 billion-dollar disaster events, including two inland floods, eight 

severe storms, three tropical cyclones, two inland floods, a crop freeze, drought, and wildfire. During 2020 

and 2021, the U.S. experienced a very vigorous year of weather and climate disasters, including the 

COVID-19 pandemic. According to National Centers for Environmental Information (NECI, 2022), the 

U.S. has sustained 332 climate and weather disasters since 1980, where overall damages/costs reached or 

exceeded $1 billion. See Figures 1 and 2 for the U.S. 2021 and 2022 (as of July 11) billion-dollar weather 

and climate disasters. Thus, the ELN design could be critical for preparing for such weather and climate 

disasters worldwide.  

 

An FLA design problem is frequently used in the supply chain design. The traditional FLA design problem 

typically assumes that the facilities are always available and that it optimizes the supply chain by 

minimizing the total logistics cost while satisfying demands by distributing products through the 

distribution channels from facilities to customers. 

 

An ELN is a supply network that promptly distributes relief items stored in the facilities to the affected 

areas (e.g., communities or neighborhoods) when a disaster occurs. Thus, an ELN design problem differs 

from a traditional FLA or other supply chain design problems because some facilities often become 

unavailable (shut down), and the stored relief items are lost during a disaster. Further, more diverse non-

financial performance measures are used in the objective function since an ELN's goal is to quickly 

distribute relief items for rapid recovery and resilience, which often requires the sacrifice of cost-based 
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efficiency. For example, Jeong et al. [17] propose a three-layered ELN with two conflicting objective 

functions–total logistics cost (TLC) and expected risk cost (ERC), defined as the opportunity cost when 

facilities are shut down. Identifying appropriate performance measures for an ELN is an ongoing research 

area since each ELN may have a different goal. 

 

 
 

Figure 1. U.S. 2021 billion-dollar weather and climate disasters (excerpted from [6]) 

 

 
 

Figure 2. U.S. 2022 (January-June of 2022) billion-dollar weather and climate disasters (excerpted from 

[21]) 

 



 
Social vulnerability refers to the degree to which a community exhibits certain socioeconomic and 

demographic conditions (e.g., high poverty, low percentage of vehicle access, crowded households, etc.), 

affecting the community's ability to prevent human suffering and financial loss in case of a disaster. These 

factors or conditions represent a community's social vulnerability. Thus, measuring social vulnerability, 

represented by Social Vulnerability Index (SVI), involves socioeconomic and demographic factors that 

affect the resilience of communities. We focus on the Center for Disease Control and Prevention SVI 

(CDC SVI) developed through Geospatial Research, Analysis & Service Program in U.S. Agency for 

Toxic Substance and Disease Registry. It aims to help public health officials and emergency response 

planners identify and map the communities that will most likely need support before, during, and after a 

hazardous event. Studies show that reducing social vulnerability decreases both human suffering and 

economic loss [8][13]. 

 

In this study, we incorporate the SVI into an ELN design problem. We propose two mathematical 

programming models to design an ELN based on FLA formulation optimally. Both models use the 

rationale that the area with a higher SVI value is taken care of with a higher priority since it is more 

vulnerable when a disaster occurs. Specifically, the first model maximizes the SVI in the objective 

function (a soft SVI constraint), while the second is to consider SVI in the constraint (a hard SVI 

constraint). Then, we compare these two models with a traditional FLA model whose objective is to 

minimize TLC. Through a case study with SVI values computed based on the 2018 U.S. census in South 

Carolina, we evaluate the behaviors of SVI as performance measure in the two mathematical models. SVI 

has been recognized to evaluate the vulnerability of communities more objectively. However, there is very 

limited research done regarding the use of SVI in the emergency or humanitarian logistics. In fact, we find 

only two studies at the time of writing this manuscript. One of the most relevant to our work is the model 

by Douglas et al. [12], a mathematical programming model with the adjusted SVI maximization and the 

budget in the constraint. They apply the model to the Brazil as a case study. In this study, we propose the 

two mathematical programming models with consideration of the SVI under the multi-source system, and 

we believe that our work would significantly contribute to both the humanitarian logistics network design 

and disaster management literature. 

 

The remainder of this paper is organized as follows. After the literature review, the social vulnerability 

index background is explained, followed by mathematical modeling of FLA with SVI. Then, a case study 

and observation are provided. Lastly, conclusions are presented. 

 

LITERATURE REVIEW 

 

Facility Location-Allocation 

 

The primary issue of the FLA problem is to determine the locations and size of facilities and distribution 

channels of items from the facilities to customers while meeting demands. Various authors have studied 

FLA problems since Cooper [7] sets an FLA problem as a mathematical programming model. Manzini 

and Bennani [19] define FLA problems as the problem of determining the optimal location for each of the 

new facilities and the optimal allocation of existing requirements to the facilities so that all requirements 

are satisfied. Askin et al. [2] consider designing a multi-sourcing distribution network and then delivering 

them to retailers. Manatkar et al. [18] consider maintaining the desired service level in addition to reducing 

the TLC to design FLA problems. Hong and Jeong [14] consider an FLA optimization with five conflicting 

objectives–TLC, maximum coverage distance, maximum demand-weighted coverage distance, covered 

demand in case of emergency, and expected number of non-disrupted supplies, seeking a balance among 

them in the optimized FLA system. They use the multi-objective programming (MOP) model and the data 



 
envelopment analysis (DEA) method to find the efficient configurations out of the various ELN 

configurations generated by the MOP model, and their work would be the first attempt to combine the 

MOP model with the DEA method in the literature on the design of ELN [14]. Hong and Jeong [15] 

consider both TLC and the expected number of demands satisfied in the emergency backup supply system. 

Recently, Hong et al. [16] propose combining the MOP model with the three data envelopment analysis-

based methods for designing ELN based on the model that Hong and Jeong [14] consider.  

 

We consider an ELN design problem with FLA, where Disaster Recovery Centers (DRCs) work as 

facilities to distribute relief items to affected areas (e.g., communities or counties) when a disaster occurs. 

We determine the locations and capacity of DRCs and distribution channels to the affected areas. 

 

Social Vulnerability Index 

 

Cutter et al. [9] explain that social vulnerability is affected by social inequalities as well as place 

inequalities. They list seventeen indicators that can be used to measure the underlying cause of social 

vulnerability. The seventeen indicators are social status, gender, race and ethnicity, age, commercial and 

industrial development, employment loss, rural/urban, residential property, infrastructure and lifelines, 

renters, occupation, family structure, education, population growth, medical services, social dependence, 

and special needs populations. Cutter et al. [10] develop the SVI to quantify a place's relative 

socioeconomic and demographic quality to understand vulnerability, which is concerned with pre-event 

embedded qualities of the social system. Thus, social vulnerability is regarded as a predictive variable 

representing the potential for being harmed when a risk occurs [4]. 

 

The vulnerability literature reveals that categories of people living in a disaster-stricken are not affected 

equally. For example, evidence shows that the poor, children, elders or disabled people, and residents at 

high-rise apartments or mobile homes are more vulnerable. Morrow [20] reveals that the vulnerability 

factors often occur in combination. The most vulnerable are those whose needs are not considered in 

disaster response planning. For example, many low-income people in New Orleans, who had no personal 

transportation, were victimized during Hurricane Katrina because public authorities did not provide 

emergency mass transit. Further, much real-time information was not efficiently provided to the groups 

with special needs (e.g., limited English proficiency, the hearing, and the visually impaired) [11].  

 

Of the two available studies regarding the SVI in the humanitarian logistics, Arnette and Zobel [1] 

consider a simple location model for asset preposition in the American Red Cross of Wyoming and 

Colorado with consideration of hazard, exposure, and SVI. Douglas et al [12] define the social benefit of 

an affected area as the relative difference between the relief service (percentage of victims who needs are 

satisfied) with and without using the SVI. Their mathematical programming model shows that the social 

benefit of using SVI is more significant as the vulnerability level increases. They also claim that there 

should be more research regarding the SVI in the humanitarian logistics due to the lack of studies. 

 

The Geospatial Research, Analysis & Service Program (GRASP) at the Centers for Disease Control (CDC) 

and Prevention Agency for Toxic Substance and Disease Registry (ATSDR) have created the Centers for 

Disease Control and Prevention SVI (CDC SVI or SVI, hereafter) based on the work of Cutter et al. [9]. 

This SVI is applied to the case study in Barbados [8], and other ongoing validation works continue [5][22]. 

These validation works motivate us to adopt CDC SVI in this study. 

 

SOCIAL VULNERABILITY INDEX BACKGROUND 

 



 
The SVI is driven by the 15 factors, classified into four different themes, as seen in Table 1. ATSDR [3] 

calculates the SVI for each of the 15 U.S. census variables at each census tract (e.g., a county) for multiple 

years after 2000. To construct the SVI, each of the 15 census variables, except the income, is ranked from 

lowest to highest scores across all counties in the U.S. with a non-zero population (lower values with 

higher ranks). Note that the income is ranked from highest to lowest since higher incomes indicate less 

vulnerability. In this way, all counties with higher ranks indicate lower vulnerability for each variable. 

Then, the following percentile rank (P.R.) is calculated for counties using the rank and the total number 

of data (N), defined by 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 𝑅𝑎𝑛𝑘 (𝑃. 𝑅. ) =
𝑅𝑎𝑛𝑘−1

𝑁−1
     (1) 

 

The percentile rank maps the county's ranks into a value between 0 and 1, and this percentile rank is 

considered as SVI of the county. That is, for each variable, a county with a larger SVI value is considered 

more vulnerable to hazards. In addition, a theme-level percentile rank is calculated based on the sum of 

the percentile ranks of the variables comprising the theme. Finally, the overall SVI for each county is 

calculated using the sum of the percentile ranks of the four themes. Note that this process can be repeated 

for each geographical region, such as an individual state. 

 
Overall Theme Variables Descriptions 
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Socioeconomic Status 

Below Poverty 
e.g., $12,140 for 1 person in 

family/household 

Unemployed  

Income  

No High School Diploma  

Household 

Composition & 

Disability 

Age 65 or Older  

Age 17 or Younger  

Older Than Age 5 With a Disability  

Single-Parent Households  

Minority Status & 

Language 

Minority  

Speaks English "Less Than Well"  

Housing & 

Transportation 

Multiunit Structures  

Mobile Homes  

Crowding 

e.g., Occupied housing units with 

more than one person per room are 

considered crowded 

No Vehicle  

Group Quarters 

All people not living in housing 

units. e.g., nursing homes, 

correctional facilities, etc. 

 

Table 1. Variables and Themes in SVI. 

 

MATHEMATICAL MODELING OF FLA WITH SVI 

In this section, we provide mathematical models for soft and hard-constrained SVI. Let us consider an 

ELN with Disaster Recovery Centers (DRC) and affected areas (or neighborhoods) represented by demand 

points (D.P.s). We need to identify the location of DRCs and relief item distribution channels from DRCs 

to D.P.s with multi-sourcing when a major disaster occurs. 

 

The following nomenclature is used: 

 



 
Sets:  

𝑗 ∈ 𝐶: index set of potential areas (or neighbors) for DRCs, j =1, 2, …, M 

𝑚 ∈ 𝑃: index set for DPs, m = 1, 2, …, N 

Note that C ⊆ P since DRC at area j feeds itself as D.P. too. 

 

Parameters: 

𝑏𝑗: minimum number of D.P.s that DRC j can cover 

𝐵𝑗: maximum number of D.P.s that DRC j can cover 

𝑐𝑗𝑚: cost of shipping one unit of demand per mile from DRC j to D.P. m  

𝐶𝐴𝑃𝑗
𝑚𝑎𝑥: design capacity of DRC j 

𝑑𝑗𝑚: distance between DRC j and D.P. m 

𝐷𝑚: demand for the D.P. m, in units/period 

vj: cost per capacity at DRC j 

𝐹𝑚𝑎𝑥: maximum number of DRCs can be built 

ℎ𝑗: holding cost per unit per period at DRC j 

SVIm: SVI value of area m 

Decision Variables: 

𝐹𝑗: binary variable deciding whether a DRC j is located at area j or not 

capj: storage capacity at DRC j 

𝑦𝑗𝑚: percentage of D.P. m's demand satisfied by the storage capacity distributed from DRC j. It is a 

real number between zero and one. This realizes the multi-sourcing. That is, an area m can be 

supplied by multiple DRCs. 

Assumptions: 

(i) A DRC can be located at any potential facility area. If a DRC is located at the facility area j, the 

distance, 𝑑𝑗𝑚, is assumed to equal zero if j = m. Also, the area where a facility is located is assumed 

to be covered by that facility, that is, 𝑦𝑗𝑚 = 1 if j = m.  

(ii) Each DRC has a designed capacity, represented by 𝐶𝐴𝑃𝑗
𝑚𝑎𝑥, and actual storage capacity (capj) is 

determined by demands in the network. Thus, the storage capacity cannot exceed the designed 

capacity. 

(iii) Each DRC follows a periodic review base-stock inventory policy with zero lead time for simplicity.  

(iv) Each DRC has enough delivery (transportation) capacities to deliver the items to each D.P. directly. 

(v) TLC consists of transportation costs from DRCs to D.P.s and inventory costs at DRCs. The 

inventory cost at DRC j depends on the periods during which inventory is stored. 

 

We first consider the traditional FLA model with TLC minimization as objective, denoted by the TFLA 

model. The objective function is to minimize TLC, which consists of the transportation/shipping cost from 

DRCs to D.P.s (first term) and inventory cost at DRC (second term) as shown in Eq (2). Note that we use 

the product of distance and demand as cost in the first term to consider both distance and population. 

 

𝑇𝐿𝐶 = ∑ ∑ 𝑦𝑗𝑚𝐷𝑚𝑑𝑗𝑚𝑐𝑗𝑚𝑚∈𝑃𝑗∈𝐶  +∑ (𝑐𝑎𝑝𝑗 − 0.5 ∑ 𝑦𝑗𝑚𝐷𝑚𝑚∈𝑃 )𝑗∈𝐶 ℎ𝑗         (2) 

 

Thus, the TFLA model is formulated as follows: 

 

minimize TLC 

 

subject to: 



 

∑ 𝑦𝑗𝑚

𝑗∈𝐶

= 1,        ∀𝑚 ∈ 𝑃                                                                                     (3) 

∑ 𝐹𝑗

𝑗∈𝐶

≤ 𝐹𝑚𝑎𝑥,                                                                                                        (4) 

 

𝑐𝑎𝑝𝑗 ≤ 𝐹𝑗  𝐶𝐴𝑃𝑗
𝑚𝑎𝑥 ,       ∀𝑗 ∈ 𝐶                                                                           (5) 

 

∑ 𝐷𝑚𝑦𝑗𝑚

𝑚∈𝑃

≤  𝑐𝑎𝑝𝑗, ∀𝑗 ∈ 𝐶                                                                        (6) 

 

𝑦𝑗𝑚 ≤ 𝐹𝑗 , ∀𝑗 𝑎𝑛𝑑 ∀𝑚 ∈ 𝑀                                                                         (7) 

 

Constraints (3) make certain that each area is covered by one or more DRCs, allowing multi-sourcing. 

Constraints (4) define the maximum number of DRCs to be built. Constraints (5) ensure that storage 

capacity at each DRC should be less than or equal to the designed capacity when it is built. Constraints 

(6) ensure that each D.P. can only be covered by DRC within DRC's storage capacity. Constraints (7) 

indicate that each D.P. is covered by DRC j only when DRC is available/built at area j. 

 

We now consider the FLA model with SVI maximization (SVI-FLA model), aiming to supply relief items 

to the areas with higher SVI values (more vulnerable areas first). Thus, the objective function is defined 

by Eq. (8) below. 

𝑆𝑉𝐼 = ∑ ∑ 𝑆𝑉𝐼𝑗𝑦𝑗𝑚𝑗∈𝐶𝑚∈𝑃 ,      (8) 

 

The SVI-FLA model maximizes SVI as an objective function with the same Constraints (3)-(7) in the 

TFLA model. We call this a soft-constrained SVI model since SVI is considered in the objective function. 

 

The third model we consider is to minimize TLC while we ensure that DRC supplies relief items to the 

areas with higher SVIs first in the constraints within its capacity. Let 𝑆𝑉𝐼𝑘
′  represent SVI value at sorted 

area k, sorted in descending order of SVIs (𝑆𝑉𝐼𝑘
′ ≥ 𝑆𝑉𝐼𝑘+1

′ ). To ensure the relief item distribution according 

to descending order of SVI values within the capacity of a given DRC j, the 𝑦𝑗𝑘 is set to 1 under the 

following condition as a constraint. 

 

∑ 𝑆𝑉𝐼𝑘
′

𝑗
𝑦𝑗𝑘𝑘∈𝑃 ≤ 𝑐𝑎𝑝𝑗 for  j     (9) 

 

We call this TFLA-SVI model, which must strictly observe the "higher SVI areas first" as a hard 

constraint 

 

CASE STUDY AND OBSERVATIONS 

 

To evaluate the behavior of the models, we conduct a case study using SVI values in South Carolina based 

on the 2018 U.S. census [3]. When a disaster occurs and a major disaster declaration is made, the Federal 

Emergency Management Agency (FEMA) opens DRCs in several S.C. counties to help the affected 

counties (areas or neighborhoods) with their recovery and relief activities. We use the problem of locating 



 
DRCs and distributing relief items as our case study. Forty-six counties in South Carolina are clustered 

based on proximity and populations into twenty counties based on 2018 census data. Then, one city from 

each clustered county is chosen based on a centroid approach. It is assumed that all population within the 

clustered county exists in that city. The distance between these cities is considered to be the distance 

between counties. For the city representing multiple counties (e.g., a composite city such as Anderson), 

we use the population of each county to calculate the weighted average of SVI for the composite city. 

Table 2 lists 20 composite cities, and Table 3 lists all costs and capacity parameters for the case study. 

 

In this case study, we assume the following scenario to evaluate the performance of TLC and SVI under 

a capacity-constrained situation. The DRC at Charleston is used for period 1 and the DRC at Greenville 

for period 2, respectively. If these two DRCs are available simultaneously, they can satisfy all demands 

for all counties–note that each DRC has 2,600K capacity and all populations are 5,088K, and this ample 

capacity would not differentiate each county based on the SVI. In other words, when the models are run 

with Charleston for period 1, all decisions are determined under the capacity-constrained situation. The 

results of period 1 are given as inputs for period 2 when the model works with Greenville. That is, both 

DRCs are available in period 2.  

 
No City County POP, Dm (K) SVIm SVI Rank 

1 Anderson Anderson/Oconee/Pickens 403 0.243 13 

2 Beaufort Beaufort/Jasper 218 0.178 16 

3 Bennettsville Marlboro/Darlington/Chesterfield 139 0.515 7 

4 Conway Horry 345 0.244 12 

5 Georgetown Georgetown/Williamsburg 93 0.504 8 

6 Greenwood Greenwood/Abbeville 96 0.677 5 

7 Hampton Hampton/Allendale 28 0.698 3 

8 Lexington Lexington/Newberry/Saluda 353 0.154 17 

9 McCormick McCormick/Edgefield 36 0.522 6 

10 Moncks Corner Berkeley 221 0.200 15 

11 Orangeburg Orangeburg/Bamberg/Calhoun 116 0.681 4 

12 Rock Hill York/Chester/Lancaster 401 0.086 19 

13 Spartanburg Spartanburg/Cherokee/Union 398 0.396 9 

14 Sumter Sumter/Clarendon/Lee 158 0.811 1 

15 Walterboro Colleton/Dorchester 199 0.134 18 

16 Aiken Aiken/Barnwell 191 0.382 10 

17 Charleston Charleston 407 0.001* 20 

18 Columbia Richland/Fairfield/Kershaw 503 0.309 11 

19 Florence Florence/Dillon/Marion 200 0.701 2 

20 Greenville Greenville/Laurens 583 0.231 14 
*The original SVI value at Charleston is 0. We change it into 0.001 to consider in the model. 

Table 2. Data for DRC location-allocation 

 
Symbol Meaning Value 

𝑐𝑗𝑚 Cost of shipping one unit of demand per mile from DRC j to area m  $0.10, ∀𝑗 𝑎𝑛𝑑 𝑚 

𝐶𝐴𝑃𝑗
𝑚𝑎𝑥  Designed capacity for DRC j 2,600, ∀𝑗 

ℎ𝑗 Holding cost per item per unit time at DRC j  $5.00, ∀𝑗 

𝐹𝑚𝑎𝑥  Maximum number of DRCs to be built 2 

 

Table 3. Parameters for the case study 

 

The results of the three models are summarized in Table 4 per period. Note that ‘1’ or a decimal in the 

cell for each period (e.g., P1 and P2) indicates the distribution channel and percentage of the supplies 



 
from a corresponding DRC to a specific area (e.g., Charleston feeds Sumter 100% and Lexington 88%, 

respectively, for period 1 in TFLA). 

 

City SVI Rank Population 
TFLA SVI-FLA TFLA-SVI 

P1 P2 P1 P2 P1 P2 

Sumter 0.811 1 158 1  1  1   

Florence 0.701 2 200   1 1  1   

Hampton 0.698 3 28 1  1  1   

Orangeburg 0.681 4 116 1  1  1   

Greenwood 0.676 5 96   1 1  1   

McCormick 0.522 6 36   1 1  1   

Bennettsville 0.515 7 139   1 1  1   

Georgetown 0.504 8 93 1  1  1   

Spartanburg 0.396 9 398   1 1  1   

Aiken 0.382 10 191   1 1  1   

Columbia 0.309 11 503 1  0.32 0.68 1   

Conway 0.244 12 345 1  1  1   

Anderson 0.243 13 403   1  1  1 

Greenville** 0.231 14 583   1  1  1 

Moncks Corner 0.200 15 221 1  1   1 

Beaufort 0.178 16 218 1  1   1 

Lexington 0.154 17 353 0.88 0.12  1  1 

Walterboro 0.134 18 199 1  1   1 

Rock Hill 0.086 19 401   1  1  1 

Charleston* 0.000 20 407 1   1 0.73 0.27 

TLC $ 25,874  $ 22,174  $ 36,597  $ 27,105  $ 37,304  $ 29,953  

SVI 3.896 3.770 6.742 0.924 6.441 1.225 

TOTAL 
TLC $48,048 $63,702 (32.6%)*** $67,257 (40.0%)*** 

SVI 7.666 7.666 7.666 
*DRC used for period 1; **DRC used for period 2; P1 and P2 stand for period 1 and period 2, respectively;*** percentage deviation from TFLA’s TLC 

Table 4. Results of the models 

 

Since TFLA minimizes TLC without considering SVI, both its TLC and SVI are the smallest, $25,874 

and 3.896, respectively during period 1. SVI-FLA maximizes SVIs without any consideration of TLC. 

Hence, its SVI is the largest (6.742) with $36,597 as TLC. In TFLA-SVI, the first 12 counties with the 

largest SVIs (e.g., Sumter, 0.8111 through Conway, 0.2444) are supplied from Charleston while 

minimizing TLC. The total demand from the first 12 cities is 2,303K, while the capacity of Charleston is 

2,600K. Since Anderson, the city with 13th largest SVI, has its population 403K which is larger than 

Charleston’s remaining capacity in period 1 (2,600K – 2,303K= 297K), Charleston does not cover it due 

to the capacity constraint given in Eq (9). Instead, Charleston partially (73% of its demand 407K) feeds 

itself with the remaining capacity since this option minimizes TLC (note that the distance for self-feeding 

is set to zero). Thus, all other remaining cities with Anderson and the remaining demands at Charleston 

(27% of the demand 407K) should be supplied by Greenville in period 2. Notice that during period 1, the 

SVI of TFLA-SVI is between TFLA and SVI-FLA while its TLC is the highest among them. The 

performance in period 2 is very much dependent on period 1. Overall, since all counties are eventually 

supplied, the sum of SVIs in periods 1 and 2 is identical (7.666, the sum of all SVIs of the 20 counties). 

TLC in the SVI-TFLA and TFLA-SVI models is higher than TLC in TFLA by 32.6 % and 40.0%, 

respectively. 

 

We clearly observe one trend in Table 4–The areas with higher SVIs are taken care of first in both SVI-

TLA and TFLA-SVI (The first 12 counties with higher SVIs are covered fully or partially with higher 



 
priorities in period 1). Although we do not specifically calculate any social benefit of an area as in [12], 

this trend indicates that our results are aligned with their results.   

 

Figures 3 and 4 display TLC and SVI per model shown in Table 4. In Figure 3, we can see that the slope 

of TLC in period 2 is much smoother than in period 1 since a majority of the performance of TLC is 

determined in period 1. In Figure 4, SVI-FLA and TFLA-SVI show a similar performance/pattern since 

all counties with higher SVIs are prioritized similarly. We explain the SVI gap between these two models 

with the multi-sourcing system under the capacity constraint. Figure 4 indicates that SVI-FLA and TFLA-

SVI take care of vulnerable counties as much as possible in period. Thus, their SVI values in period 2 are 

lower than that of TFLA, which does not consider any high-priority vulnerability during the periods. 

 

 

Figure 3. TLC per Model                                           Figure 4. SVI per Model 

 

Figures 5, 6, and 7 display the distribution channels from DRCs for TLFA, SVI-FLA, and TLFA-SVI, 

respectively, based on Table 4. The number in the parenthesis denotes an SVI value for the county. In 

Figure 5 with TFLA, the ELN is very efficient since it minimizes TLC only without any humanitarian 

metrics. It also shows both DRCs feed themselves since the distance to itself is zero. The capacity of 

Charleston is fully utilized in period 1 due to the characteristics of the multi-source system. For example, 

88.4% of the demand for Lexington is supplied by Charleston in period 1, which makes Charleston's full 

capacity 2,600K used in period1, and Greenville provides the remaining 11.6% in period 2. In Figure 6 

(SVI-FLA), the network sacrifices TLC to maximize SVI. We can see that Charleston does not even feed 

itself since its SVI (0.001) is very low. But we know that this is not realistic in the real world. Instead, it 

feeds Spartanburg, Greenwood, McCormick, and Bennettsville–cities with higher SVIs, closer to 

Greenville. Once it fully utilizes Charleston's capacity, it shares Columbia with Greenville. Apparently, 

its routing is very complex compared to that in the TFLA model in Figure 5. In Figure 7, the first 12 

counties with the highest SVIs are fully supplied by Charleston in period 1 because of the hard constraint. 

Charleston is not included in the 12 counties since its SVI is the smallest. However, the objective of 

minimizing TLC contributes to self-feeding in Charleston. Thus, 27% of the demand for Charleston is 

supplied by itself, while Greenville supplies the remaining 73% in period 2. Therefore, a total of 13 

counties are supplied in period 1. Note that the sum of the first twelve highest SVIs is 6.4412, which is 

smaller than the maximal SVIs achievable within Charleston's capacity, 6.742 by SVI-TFLA. 

 

The largest sum of SVIs achievable by Charleston in period 1 is 6.742. As seen in Figure 6 and Table 4 

(SVI-FLA), the maximal SVI is achieved by supplying several counties with low SVIs (e.g., Moncks 

Corner, Beaufort, Walterboro) and a partial supply to Columbia (county with 11th highest SVI) with the 

remaining capacity of Charleston instead of self-feeding. This scheme is caused by the multi-sourcing 

TFLA SVI-FLA TFLA-SVI

Period1 25,874 36,597 37,304

Period2 22,217 27,105 29,953

Total TLC $48,091 $63,702 $67,257
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system associated with capacity constraint in DRC denoted by Eq (9). In other words, the remaining 

capacity after feeding the twelve high SVI cities in period 1 is more efficiently and effectively used in 

SVI-FLA in terms of SVI. 

 

 
Figure 5. An ELN with TFLA                                   Figure 6. An ELN with SVI-FLA 

 

 
            Figure 7. An ELN with TFLA-SVI 

 

CONCLUSIONS 

 

The emergency logistics network (ELN) design problem has become a major strategic decision since 

recent natural or human-made disasters, including the Covid-19 pandemic, have inflicted on the whole 

world. This study attempts to utilize the facility location-allocation (FLA) model to design ELN by 

incorporating the Social Vulnerability Index (SVI) provided by the Centers of Disease Control and 

Prevention. Many authors have published their articles considering several performance measures on the 
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ELN design problems, but very few literature explicitly have utilized SVI in the quantitative models. Thus, 

we have developed the two SVI-based FLA models and compared them with the traditional FLA (TFLA) 

model under the multi-sourcing ELNs with a capacity constraint.  

 

The TFLA model minimizes total logistics cost (TLC), whereas the SVI-FLA model maximizes SVI with 

the same constraints as the TFLA model (a soft SVI-constrained model). TFLA-SVI model minimizes 

TLC with a hard constraint of SVI, where all counties with higher SVI values should be assigned to a 

corresponding disaster relief center (DRC) in a descending SVI order. We have conducted a case study 

with SVI values computed using 2018 U.S. census data in South Carolina. As expected, overall, SVI-FLA 

is less cost-efficient than TFLA by 32.6% since SVI-FLA focuses on more vulnerable groups of counties 

by sacrificing efficiency particularly in period 1 when DRC capacity is limited. 

 

When comapring the SVI-FLA model with the TFLA-SVI model, we find SVI-FLA outperforms TFLA-

SVI in terms of both SVI and TLC. This is because that the soft SVI-constrained model utilizes the limited 

capacity more effectively and flexibly than the hard SVI-constrained model under the multi-sourcing 

system. We observe that the multi-sourcing system makes a DRC fully utilized by allowing partial supplies 

from other DRCs for a specific county. We also observe that the combination of capacity constraint and 

the multi-sourcing generates the outcomes, which are not easily predicted by our intuition. As observed 

in the case study, applying the SVI to the ELN design problem through mathematical programming is 

relatively straightforward. 

 

Recently environmental or natural disasters have turned out to be major causes of the most potential 

damages against world. As the impact of global climate change, as well as all kinds of fatal viruses, 

continues to flow across the globe, ELN design problems are becoming a more imminent and critical task 

to be solved. Considering the current trend where social responsibility is more emphasized than ever 

before, we expect that the application of SVI or similar humanitarian-based performance metrics will play 

a more important role in the emergency and/or humanitarian logistics. Future research will significantly 

enhance this study if the transportation disruptions, including route and transportation mode disruptions, 

are integrated with this study.  It would also be interesting to develop a goal programming-based objective 

function using SVI and other performance measures for future study.  
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