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ABSTRACT 

This paper presents a basic approach for illustrating complex probability models using spreadsheets as a simulation 

tool. We will illustrate this approach by using three popular probability examples.  Our targeted audience is 

practitioners in business professions and those with less rigorous training in computational mathematics.  Modeling 

and Simulation are well known as efficient and effective alternatives to analytical methods in solving many 

businesses, engineering, and scientific problems.  These models are easily understood and can be tweaked for further 

exploration, and more importantly, they are risk-free, and cost-effective in terms of experimentations of “What-If” 

analysis. The capability of finding reasonable estimates via simulation, where no analytical solution is known for 

the problem, may shed light on our understanding and insights about the problem and eventually lead us to find an 

analytical solution.     

Keywords: Modeling, Simulation, Non-probability methods, Spreadsheet Modeling. 

 

INTRODUCTION 

The recent efforts to prepare the workforce for today’s digital economy have spurred an increased interest 

in developing and introducing Analytics into business schools’ curriculums. This promulgation has 

pointed to the import of retooling teaching methods to enhance the learning process.  However, there must 

be a careful balance between the simplicity of these tools and their functional sophistication. This is 

particularly salient for users with a less rigorous background in mathematical training and underlying 

statistical modeling.  In this paper, we concentrate on using spreadsheets (e.g., MS-Excel) since they are 

an essential business tool in finance and accounting, and they are readily available on most systems used 

by our target audience; students and those who use spreadsheets as part of their routine activities as 

business professionals.  

We will use classic examples in popular probability games (models), familiar to average practitioners, to 

show how one computes the probability of certain events and outcomes without using sophisticated 

statistical theory. Furthermore, we will illustrate how to use spreadsheets' capability and functionality to 

generate, organize, and manipulate virtual data to arrive at reasonable estimates of those particular 

outcomes of interest.  For some of the examples we discuss, we have the luxury of verifying the accuracy 

of the simulated answers with the true answers of probabilistic outcomes obtained according to the rigor 

of mathematical derivations and closed-form solutions via statistical theory.  This will demonstrate how 

one must structure the underlying model, and define input parameters, variables, and algorithmic layout 

steps in the random generation of artificial data as inputs to those models, to mimic realistic situations.  

Before going into the discussion of our examples, we need to briefly describe the model elements and 

terminologies used in our discussion.  
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Model - Generally, models are abstractions, computer-based representations of real systems under study. 

By design, simulated results will be generated through a model via a spreadsheets environment, and thus 

we need to have a meaningful representation of variables prior to random generation of the data required 

by our models. This initial step is crucial.  One may need to change initial input values for increased 

accuracy and better results from these models.   

Variables – These are memory locations, essentially a placeholder for any mathematical object, designed 

to hold a numerical representation of random quantities defined on a connected (continuous) or 

disconnected (discrete) set of values. Variables (along with any other pertinent assumptions the modeler 

has imposed on the model) must clearly be defined and quantified.  

BIRTHDAY PARADOX 

This example is discussed in more detail in earlier articles [see Moshirvaziri, Amouzegar, and Rezayat, 

2017, Gleich, 2010, and Sun, 2011]; thus, we briefly introduce it again for clarity.  This example deals 

with calculating the probability of finding at least two (or any number) people with the same birthday 

(matching only the months and day of the year but may be on different years) among a sample of size 𝑛 

people. The problem is a variation of a much more important class of problems known as “Birthday 

Attack” with applications in information security.   

Generating a random sample - Let 𝑥 denote a randomly selected individual’s birthday.  We assume 

birthdays occur uniformly throughout the year from January 1 to December 31.  This is a reasonable 

assumption (See Figure 1) based on decades of data from the Social Security Administration 

(FiveThirtyEight.com). Furthermore, we assume there are 365 days in a given year. Thus, variable 𝑥 picks 

on values from 1 to 365 at random.  Given this representation, we can simply generate a random sample 

of any size using embedded functions on a spreadsheet.  For example, an Excel function 

“RANDBETWEEN (1,365)” will generate an instance of the random variable 𝑥 in a cell of our 

spreadsheet.  Note that the value of 𝑥, in turn, may be converted to the exact month and day of that month 

by a reverse operation, if desired. This is intuitively true because any data point uniquely represents only 

one day of the year.   

 

Figure 1: Average Birthrates by day of the month 
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If two instances of variable x are assigned equal values, this implies the detection of a match, which is 

also referred to as a collision in the terminology of the Birthday Attack problem.  Therefore, a simple 

detection method can be used to find two generated values with the same magnitude (e.g., “Frequency” 

function, such as {=FREQUENCY (D2:D94, D2:D94)} applied to a vector of size 𝑛 of generated 

birthdays, we can find unique frequencies of the vector’s elements). Then other embedded Excel functions 

such as “IF” and “COUNTIF” s (e.g., s =IF (COUNTIF (G2:G94,">=3") > 0, 1, 0) can help in determining 

the “Collision” or “Matches” points. (i.e., precisely one, at least one, exactly two, at least two, exactly 

three, at least three, and so on). We then find the mean of the number of “true” outputs from the last 

function output, representing the simulated probability of the case under study.  For this example, we 

generated 100 samples of various sizes of birthdays and found results that were within an acceptable 

threshold from the closed-form solutions, where available.   For example, for the case of at least two 

birthday matches in the sample size of 30, we found that in 70 of the samples (out of 100), we had at least 

one match.1  

Hence, the P(at least one match) = 0.70000, closely matching the result obtained via analytical solution 

[Moshirvaziri, Amouzegar, 2017].  

𝑃(𝑋2 ≥ 1) = 1 − 𝐹(𝑋2) =  1 −  𝑝(𝑛; 𝐻) =  1 −
𝑃𝑛

𝐻

𝐻𝑛
                                         

For H = 365 and 𝑛 = 30,     

Where, as before, 𝑛 is the sample size, 𝑋2 denotes the collision of two birthdays, H is the number of 

periods (for example, the number of days in a year) considered, and 𝑃𝑛
𝐻 is permutation function. The result 

therefore is 𝑃(𝑋2 ≥ 1) = 1 − 0.293683757 = 0.706316243 

If we let H = 365 and 𝑛 = 93, 𝑃(𝑋3 ≥ 1) = 0.5430 for at least one trio collision, as shown in the graph 

below. In the calculation via spreadsheet, we obtained 0.5400, which is still within an acceptable range of 

theoretical results. 

 

 

                                                           
1 The generated datasets are available upon request and will be provided during the conference presentation 
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The complete discussions of density functions, as well as distribution functions for a variety of different 

birthday collision scenarios, are presented in the authors’ prior publication listed.   

 

PROBABILITY GAMES 

Preliminary model setup - below, we lay out a data structure for the virtual generation of a random 

drawing of cards from a deck of 52 playing cards.  Let 𝑥𝑖 , 𝑓𝑜𝑟 𝑖 = 0, 1, 2, ⋯ , 51, denote a uniformly 

generated random number in the set of nonnegative integers {0, 1, 2, ⋯ , 51}.  We can implement this using 

the Excel function 𝑥𝑖 = 𝑅𝑎𝑛𝑑𝑏𝑒𝑡𝑤𝑒𝑒𝑛 (0,51).  

The Suit designation - The suit designation of the card is found by the integer quotient of the division of 

 𝑥𝑖/13.  For example, suppose 𝑥𝑖 = 48.  Then, INT (48/13), which is 3 designates the suit to be “Spade”.  

Generally, if the quotient of the integer division is 0, or 1, or 2, or 3, we assign the suite of Club, Diamond, 

Heart, and Spade, respectively. 

The rank designation - The modulus or remainder of the corresponding decimal division of  𝑥𝑖/13.   is 

48 – 3*13 = 9 designates the card’s rank, also referred to as value, label, or name.  Hence, the randomly 

generated card in this example has a rank of 9 and a suit of Spade.  Generally, if the modulus or remainder 

of the decimal division (rank) is any member of the set: {0, 1, 2, ⋯ ,12}, we assign the label of Ace, King, 

2, 3, …, 10, Jack, and Queen, respectively. This is illustrated in the data structure shown in the table below. 

 

Cards labels   Ace King 2 3 4 5 6 7 8 9 10 Jack Queen 

Card Rank  0 1 2 3 4 5 6 7 8 9 10 11 12 

Club 0 0 1 2 3 4 5 6 7 8 9 10 11 12 

Diamond 1 13 14 15 16 17 18 19 20 21 22 23 24 25 

Heart 2 26 27 28 29 30 31 32 33 34 35 36 37 38 

Spade 3 39 40 41 42 43 44 45 46 47 48 49 50 51 

Suits Card Suit               
With this model set up, we can simulate a random hand of Poker or Blackjack and identify the hand’s 

name according to the rules of these popular games.  For example, in a poker game, by creating a bin of 

size 10 as illustrated below, we can keep track of the frequencies of each bin value, which corresponds to 

the occurrence of a particular hand of Poker. 

This data structure also tends to be very useful for deriving analytical formulas for each possible hand of 

the card game.  For example, in the next two sections we will illustrate how to derive those solutions using 

the ranks (the columns of the matrix above) and the suits (the corresponding rows).   Moreover, the 

derivations are not unique. For example, we will illustrate the derivation of the density function for the 

game of 5-card Poker in one way.  However, we can derive the same solution using a different selection 

scheme from the structured data above. 

A Bin construction for Spreadsheet simulation – We have built the following Bin of size ten in order 

to collect data on the frequency of random hands of the simulated game.  At the end of the simulation, 

each Bin cell will have the total frequency of the designated hand, which is used in the calculation of the 

simulated probabilities. 
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Bin Value Hand Type 

0 Reject   

1 Straight flush  

2 Four of a kind 

3 Full house 

4 Flush 

5 Straight  

6 Three of a kind 

7 Two Pairs 

 8 One Pair  

9 Nothing 

     

Bin zero - Note that the Bin value of zero (0) will be necessary since the rules may be violated during the 

random generation of 5 cards to simulate a hand of Poker.  For example, two cards of the same rank and 

suit may be generated (such as two Aces of clubs) or five cards of the same suit and rank may be generated, 

which is in violation of the game rules.  The counts of those “illegal” hands would be enumerated at a Bin 

value of zero. Bin zero frequency will help us to estimate the simulated probability of those outcomes 

more accurately. This is true regardless of the platform on which the simulation is performed, on a 

spreadsheet or via commercially available simulation tools. 

Bin 9 – This cell accounts for all hands that are not accounted for in a lower number of cells. According 

to the rules of the game, if the highest ranked card in a nothing hand, is higher in rank than that of another 

nothing hand’s highest card, then it beats that hand. For example, on one Nothing hand, there may be Ace 

high, and on the other King high.  The first hand beats the second. 

Let us now look into the theoretical calculations of possible outcomes of this game and find the empirical 

probability density function for the game of Poker.  Finally, we use these results to validate how good are 

the simulated results through the spreadsheet approach versus those of theoretical (closed form solutions). 

The density function - Clearly, we can calculate the frequency of any particular outcome out of the total 

of 𝐶5
52 =  2,598,960 hands of a 5-card poker game that may be dealt from a deck of 52 cards. The data 

structure given earlier greatly facilitates this process—the density function for various hands is given in 

the table below.  For the continuity of our discussion, we also include the derivation of various hands of 

this game in the next section.  

Hand Frequency Probability 

Royal flush 4 0.00000154 

Straight flush 36 0.00001385 

Four of a kind 624 0.00024010 

Full house 3744 0.00144058 

Flush 5108 0.00196540 

Straight  10200 0.00392465 

Three of a kind 54912 0.02112845 

Two Pairs 123552 0.04753902 

One Pair  1098240 0.42256903 

Nothing 1302540 0.50117739 

 2598960 1.00000000 
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Frequency of various hands in Poker – 

In this section, we only derive the number of hands of a particular outcome for the game.  Let F denote 

the frequency of the hand. In order to find the probability of each hand, we can divide this frequency by 

the total number of possible hands, ∁5
52 or 2,598,960.  In addition, we order the equation numbers to be 

consistent with those of the Bin numbers for an easy cross reference.   

Royal Flush hand - There are four Royal Flushes of the highest rank, one in each suit designation. 

 𝐹(𝑅𝑜𝑦𝑎𝑙 𝐹𝑙𝑢𝑠ℎ) = ∁1
4 = 4                                                              

Straight Flush hand - There are ten choices for the minimum rank of the straight and four designations for 

the suit, deducted by four since four of which are Royal Flushes. 

𝐹(𝑆𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝐹𝑙𝑢𝑠ℎ) = ∁1
10∁1

4 − 4     = 36                                               (1) 

Four of a Kind hand – This implies one rank designation for the cards of the same suit and one rank 

designation for the single card, which may be of any of the four suits. 

𝐹(𝑓𝑜𝑢𝑟 𝑜𝑓 𝑎 𝑘𝑖𝑛𝑑) =   ∁1
13 ∁4

4  ∁1
12 ∁1

4     = 624                                              (2)                        

Full House Hand – Similar to the strategy implemented for the previous hand, we have one rank 

designation and a choice of three from the four suits for the first part and one rank designation (different 

from the first designation) with a choice of two suits from the possible four suits.  Hence, we derive, 

𝐹(𝑓𝑢𝑙𝑙 𝐻𝑜𝑢𝑠𝑒) =   ∁1
13 ∁3

4  ∁1
12 ∁2

4  = 3,744                                                   (3) 

Flush Hand - One designation of the four suits with a choice of five from the 13 ranks, deducted by the 

frequency of the Royal and Straight flushes. 

𝐹(𝐹𝑙𝑢𝑠ℎ) = ∁1
4 ∁5

13 − 40  =   5,108                                                        (4) 

Ordinary Straight hand - The frequency of straight is deducted by the frequencies of straight flushes and 

Royal flushes to find the frequency of ordinary straights  

𝐹(𝑆𝑡𝑟𝑎𝑖𝑔ℎ𝑡) =  ∁1
10 (∁1

4)5 −  ∁1
4 − ∁1

10∁1
4 + 4   = 10,200                                                (5)                         

Three of a kind hand – We have one rank designation with the choice of three suits and two more rank 

designations (different from the first and each other) each with a choice of one suit from the four possible 

suits, hence the derivation below. 

𝐹(𝑇ℎ𝑟𝑒𝑒 𝑜𝑓 𝑎 𝑘𝑖𝑛𝑑) =   ∁1
13 ∁3

4  ∁2
12 (∁1

4 )2   = 54,912                                                  (6) 

Two Pair hand – We have two rank designations with the choice of two suits for each, and another rank 

designation with the choice of one from the four suits to derive, 

 𝐹(𝑇𝑤𝑜 𝑝𝑎𝑖𝑟) =   ∁2
13 (∁2

4)2 ∁1
11 ∁1

4    =  123,552                                             (7) 

One Pair hand – Similar to the above, we have one rank designation with choice of two suits and three 

more rank designations, each with the choice of one suit only from the four possible suits; hence we have, 

𝐹(𝑂𝑛𝑒 𝑃𝑎𝑖𝑟) =   ∁1
13 ∁2

4  ∁3
12 (∁1

4 )3   =   1,098,240                                             (8) 
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Nothing hand - This implies five rank designations from the deck (five different cards) reduced by ten 

possible straight hands. Then for each rank, we have the choice of one from four suits, deducted by four 

possible “flash” hands (five cards of the same suit).  Hence, the following derivation.  

𝐹(𝑁𝑜𝑡ℎ𝑖𝑛𝑔) = (∁5
13 − 10)( (∁1

4)5 − 4) =   1,302,540                                                   (9) 

 

Simulated Probability density function (pdf) for the game - Using the functionality of the spreadsheet 

as per our model description, we generate a great number of simulated hands of the game of 5-card poker.  

The counter for each Bin will keep track of different possible outcomes.  Below, is a table of simulated 

outcomes for a given run. 

 

Bin Value Frequency Simulated Probability 

0 17889  

1 3 0.00003654 

2 17 0.00020704 

3 116 0.00141272 

4 155 0.00188769 

5 286 0.00348309 

6 1777 0.02164144 

7 3882 0.04727747 

8 34692 0.42250125 

9 41183 0.50155278 

 100000 1.00000000 

 

Finally, the table below illustrates how good the simulated results are compared to the true answers 

found by the density function. 

 

Bin Value Frequency Simulated Probability True Probability Difference 

0 17889     0.000001542  

1 3 0.00003654 0.00001385 0.00002268 

2 17 0.00020704 0.00024010 0.00003306 

3 116 0.00141272 0.00144058 0.00002785 

4 155 0.00188769 0.00196540 0.00007771 

5 286 0.00348309 0.00392465 0.00044156 

6 1777 0.02164144 0.02112845 0.00051299 

7 3882 0.04727747 0.04753902 0.00026155 

8 34692 0.42250125 0.42256903 0.00006778 

9 41183 0.50155278 0.50117739 0.00037538 

 100000 1.00000000 1.00000000  
 

                                                           
2 Probability of Royal Flush 
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The difference column shows numbers at the fourth and fifth decimal places. The Chi-square, goodness-

of-fit test produces a large p-value, which confirms a perfect fit. Again, this illustrates how through the 

knowledge and skills of modeling and simulation, one can obtain reliable simulated results, thereby 

compensating for the lack of an analytical approach to a random phenomenon under study.  Note that if 

we generate more random hands, say by one or two orders of magnitude, the accuracy of results will 

increase and thus, the difference column will further decrease. However, the only drawback is that the 

volume of generated data will be too large to handle due to the limitations of the spreadsheet. 

 

FRAUD DETECTION 

It may be counterintuitive, but in many naturally occurring or human generated data sets, the first digits 

of numbers often follow a distribution similar to the table below. That is, the number 1 appears as the 

significant leading digit3 about 30% of the time, while 9 appears as the most significant digit less than 5% 

of the time.  

 

This distribution is known as Benford’s law, and a surprisingly large number of data sets, including lengths 

of rivers, street addresses, IRS Service files, and electricity bills, follow this law (We refer the interested 

reader to [Gleich, 2010] and [Amouzegar, Moshirvaziri, and Snyder, 2018]). Additionally, see 

[Wikipedia: https://en.wikipedia.org/wiki/Benford’s law] for a more elaborate discussion of Benford’s 

Law and its role in Data Science, Analytics, and Information Security. One of the primary applications of 

this phenomenon is fraud detection. An example of such an application is in recent Covid-19 data reported 

by various countries. For example, Farhadi and Lahooti [https://doi.org/10.3390/covid2040034], using 

Benford’s Law and Goodness-of-Fit test, showed how several countries offered highly unreliable (or at 

least suspect) Covid results. 

Mathematically, the first significant digit, (𝑛 = 1), distribution of Benford’s dataset is governed by (10), 

where 𝐷 denotes the first significant digit.  Thus, for 𝑛 = 1, 

𝑓(𝑑) = P(𝐷 = 𝑑) = log
10

(1 +
1

𝑑
)   𝑓𝑜𝑟 𝑑 = 1, 2, … , 9.                                                                                          (10) 

Then for every other significant digit (𝑛 > 1)   

𝑓(𝑑) = ∑ log
10

(1 +
1

10𝑘 + 𝑑
)

𝑏

𝑘=𝑎

  𝑓𝑜𝑟 𝑑 = 1, 2, … , 9.    𝑎𝑛𝑑  𝑎 = 10𝑛−2,   𝑏 = −1 + 10𝑛−1                           (11) 

For example, the table below shows the distribution for 𝑛 = 2, ⋯ , 6 significant digits of Benford’s law dataset.  

                                                           
3 The first significant digit in a number is the first nonzero digit when reading from left to right.  For example, the first significant 

digit of 218.81 is 2 and that of 0.0375 is 3.  The first significant digit is always nonzero, but second and higher significant digits 

can be 0.  The second significant digit of 0.102 is 0. 

First digit 1 2 3 4 5 6 7 8 9 

Probability 0.3010 0.1761 0.1249 0.0969 0.0792 0.0669 0.0580 0.0512 0.0458 

https://en.wikipedia.org/wiki/Benford’s%20law
https://doi.org/10.3390/covid2040034
https://en.wikipedia.org/wiki/Benford%27s_law
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# Prob (digit 2) Prob (digit 3) Prob (digit 4) Prob (digit 5) Prob (digit 6) 

0 0.119679268596881 0.101784364644217 0.100176146939936 0.100017591505929 0.100001758918451 

1 0.113890103407556 0.101375977447801 0.100136888117578 0.100013681135446 0.100001368036203 

2 0.108821499005508 0.100972198137042 0.100097672594615 0.100009771195224 0.100000977158284 

3 0.104329560230959 0.100572932110926 0.100058500283487 0.100005861685164 0.100000586284648 

4 0.100308202267579 0.100178087627948 0.100019371096905 0.100001952605187 0.100000195415329 

5 0.096677235802322 0.099787575692177 0.099980284947841 0.099998043955201 0.099999804550292 

6 0.093374735783036 0.099401309944962 0.099941241749526 0.099994135735125 0.099999413689550 

7 0.090351989269603 0.099019206561896 0.099902241415449 0.099990227944871 0.099999022833114 

8 0.087570053578861 0.098641184154777 0.099863283859372 0.099986320584355 0.099998631980963 

9 0.084997352057692 0.098267163678253 0.099824368995291 0.099982413653486 0.099998241133135 

 

Cost Dataset – One of the interesting applications of Benford’s law is detecting fraud in accounts payable 

reports. We collected hundreds of daily payments for a year, assessing the first five significant digits of 

each payment.  The table below shows the results of d the distribution of the appropriate significant digits.  

 

  Probability function for dataset digits 

Digits d1 d2 d3 d4 d5 

0 0.00000 0.11004 0.09707 0.10043 0.09851 

1 0.30178 0.12206 0.10476 0.10139 0.09947 

2 0.17347 0.09659 0.10476 0.09467 0.10043 

3 0.12158 0.11341 0.10380 0.09659 0.09419 

4 0.10043 0.10524 0.10812 0.10380 0.09851 

5 0.08650 0.08554 0.10332 0.09995 0.10428 

6 0.06583 0.10428 0.09082 0.09611 0.08650 

7 0.05382 0.08938 0.09082 0.10139 0.11293 

8 0.05094 0.09034 0.09611 0.10908 0.09226 

9 0.04565 0.08313 0.10043 0.09659 0.11293 

  

STATISTICAL TESTING 

We conducted two effective statistical tests to detect fraudulent activity on the dataset. 

Chi-Square Goodness-of-Fit Test – Testing the Null Hypothesis that the dataset is not subject to 

fraudulent activity.  We applied the Chi-square goodness-of-fit test to the first significant digit of the 

dataset. The Chi-square goodness-of-fit test can be applied to discrete distributions and is reliable for 

relatively small dataset. The table below shows the results of the Chi-square “test.” 

χ2 = ∑
(𝑦𝑖 −  𝑥𝑖)2

𝑥𝑖
                                                                                                                                                             (12)

9

𝑖=0
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Significant Digit Chi-square Test 

1 0.00125117 

2 0.00646580 

3 0.00286393 

4 0.00169824 

5 0.00634058 

  

The value of Chi-squared, χ2 derived by equation (12) above, for every significant digit, as illustrated in 

the table, is minimal. This indicates a large p-value and that the corresponding distribution of the observed 

dataset, the 𝑦𝑖′𝑠 are a good fit for the expected distribution, Benford’s, the 𝑥𝑖
′𝑠, 𝑖 = 1, ⋯ , 5.    

Absolute Norm Test - We also computed the relative error using the absolute value norm (see table 

below) 

 ERROR Relative error function for dataset digits  

Digits d1 d2 d3 d4 d5 

0 0.00000 0.08051 0.04633 0.00252 0.01507 

1 0.00248 0.07171 0.03335 0.01252 0.00542 

2 0.01486 0.11241 0.03749 0.05429 0.00423 

3 0.02692 0.08700 0.03205 0.03418 0.05820 

4 0.03635 0.04915 0.07929 0.03589 0.01492 

5 0.09239 0.11524 0.03535 0.00028 0.04279 

6 0.01663 0.11675 0.08631 0.03835 0.13498 

7 0.07194 0.01076 0.08278 0.01495 0.12938 

8 0.00422 0.03165 0.02568 0.09235 0.07724 

9 0.00231 0.02193 0.02204 0.03238 0.12946 

 

Both Chi-square and the relative error test do not show any significant deviation, and the null hypothesis 

that the dataset is Benford cannot be rejected.  Thus, we can conclude the goodness of the data reported 

by the accounts payable. 

Regenerative Method of Simulation (RMS) - There are side considerations in modeling and simulation 

methods designed to aid practitioners in improving upon the process and enhancing the accuracy of the 

simulated results.  RMS provides a mechanism by which new samples are generated.  Upon generation of 

each sample, usually, the simulator extracts statistics of interests from the current sample to be augmented 

with those collected from prior samples.  The question is when to start generating a new sample.  RMS 

suggests designating a particular state of the system initially. Then keep generating random data for the 

current sample and only stop when revisiting the same state (see [Haas, 2013]). Under certain assumptions, 

samples generated with RMS will constitute a series of reliable, independent samples.  RMS has 

successfully been applied in inventory control systems and queueing and renewal point processes. The 

quality and accuracy of simulated results have improved due to considering sampling methods governed 

by the RMS strategy. 
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CONCLUDING REMARKS  

In this paper, we demonstrated the effectiveness of spreadsheets in facilitating the learning process of 

modeling and simulation.  The results obtained for our examples were consistent with those produced via 

analytical solutions and those found by specialized commercially available simulation software tools such 

as ExtendSim [Diamond, B., et al., 2017]. However, for many real-world applications, a simulation may 

be the only alternative to finding reasonable estimates because of the lack of theoretical foundation or the 

existence of a closed-form analytical solution for the particular case at hand.  Not to mention that time and 

cost could factor in choosing simulation over other alternatives.   
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