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Abstract 
 
Speed is considered as a fundamental factor in traffic management and control. Numerous 
factors have an enormous impact on traffic speed including mandatory traffic policy restrictions. 
However, there is still lack of conclusive research demonstrating the true impact of COVID-19 
on traffic speed for freeways. To fill this gap, the ultimate objective of present study is to 
investigate the influence of COVID-19 related factors on traffic speed for two multilane 
highways (I-210 and CA-60). The data were collected from three different sources: Caltrans 
Freeway Performance Measurement System (PeMS) and Center of Disease Control and 
Prevention (CDC), which span from February 1, 2020 to April 30, 2020, before and after the 
implementation of SAH order in the state of California. The study is highlighted with some 
unique contributions and features. First, multivariate models were utilized to account for the 
common unobserved heterogeneity shared observational level and hour level for four different 
lanes. Second, given the strong interdependency between four lanes, endogeneity was explicitly 
considered. Third, due to the model complexity resulting from multivariate models with the 
inclusion of endogeneity, the integrated nested Laplace approximation (INLA) algorithm was 
used over the typical Bayesian hierarchical model based on Markov Chain Monte Carlo 
(MCMC) approach.  
 
Keywords: Traffic Speed, COVID-19, Speed Prediction Models, Endogeneity. 
 

1. Introduction 
 

Vehicle speed has a huge impact on traffic management and control, and it is considered as 
an elemental factor to determine the performance of traffic. The estimation of speed distribution 
of roadway entities could help to improve several traffic-safety programs, planning, and roadway 
service level. However, the information regarding the speed distribution of road entities is 
usually unavailable. With that said, the basic relationship of speed with other elemental factors of 
road entity such as flow or density has been used to estimate the speed (Greenshields, 1935; 
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Lighthill and Whitham, 1955; Gerlough and Huber, 1976). Based on the relationship between 
flow, density and speed, numerous studies included several independent variables which could 
significantly impact the vehicular speed such as weather conditions (Agarwal et al., 2005; Zhao 
et al., 2012; Ghasemzadeh et al., 2018), driver behavior (Rämä, 1999; Corkle et al., 2001), 
roadway-built characteristics (Wu et al., 2013; Semeida et al., 2013), traffic characteristics 
(Vicari et al., 2000; Wang et al., 2007), construction sites (Kang et al., 2004; Weng and Meng, 
2011),  and so on.  Among them, a subset of studies incorporated special events as the 
explanatory variable to investigate the influence on traffic speed.   

 
Special events such as sports matches, organized gatherings, fairs, disasters, or 

implementation of restrictive traffic policies could potentially impact the traffic behavior 
(Wojtowicz and Wallace, 2010; Kwoczek et al., 2014; Tempelmeier et al., 2020). As is well 
known, due to the rapid spread of the novel coronavirus (COVID-19), the stay-at home (SAH) 
order had been implemented in the state of California on March 19, 2020. The consequences of 
SAH directive have greatly influenced various domains including economy (Fernandes, 2020; 
Ozili and Arun, 2020), public healthcare sector (Ji et al., 2020; Tanne et al., 2020), tourism and 
aviation field (Abu-Rayash and Dincer, 2020; Nicola et al., 2020), educational realm (Crawford 
et al., 2020; Sintema, 2020), transportation field (Kerimray et al., 2020; Huang et al., 2020), and 
many more. Even though a plethora of studies have been extensively dedicated to different types 
of special events, there is still alack of conclusive research results regarding the investigation of 
COVID-19 impact on roadway traffic speed. Therefore, incorporating COVID-19 impact on 
traffic speed into traffic characteristics would facilitate the development of better strategies and 
policies to engender a safe environment for all roadway users.    
 

Given such context, there has been considerable interest in developing speed prediction 
models to obtain crucial insights of mobility behavior. For instance, Pei et al. (2012) developed 
the prediction model for speed distribution by employing Full Bayesian method and considered 
the effects of weather conditions, road geometry, and traffic flow. Another study conducted by 
Silvano and Bang (2015) dedicated on the effect of posted speed limit on urban roads by 
including the variables pertaining to roadway-built characteristics such as presence on-street 
parking and sidewalks, road environment, and carriageway width.    

    
In addition to the above studies which were focused on the development of speed prediction 

models, some studies have utilized endogeneity models to account for the simultaneity issues 
(Eisenberg, 2003; Washington et al., 2010; Cheng et al., 2018) between the explanatory and 
response variables. Previous safety literature shows that large number of studies developed the 
models by assuming the unidirectional relationship between independent and dependent 
variables, in which only independent variables could affect the dependent variables. Nonetheless, 
few studies in the past revealed different simultaneity issue where the phenomenon could be 
inverse, which means output variables could also influence the input variables. Ignorance of the 
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issue of endogeneity could lead to bias and unreliable inferences (Mannering and Bhat, 2014). 
To overcome this problem, some studies attempted to address the endogeneity problem by 
employing different methods (Dane et al., 2014). For example, Himes and Donnell (2010) 
developed mean operating speed model and speed deviation model by employing three-stage 
least squares (3SLS) estimator to investigate the traffic flow and roadway-built factors with the 
consideration of endogeneity.  
 

Building upon the previous studies, the main objective of present study is to investigate 
the impact of COVID-19 on traffic speed. For this purpose, the data were collected from three 
unique sources: Caltrans Freeway Performance Measurement System (PeMS) to obtain the 
traffic information of two parallel freeway (I-210 and CA-60) situated within the Los Angeles 
County in California; Center of Disease Control and Prevention (CDC) to collect the number of 
daily confirmed COVID-19 cases; and incorporation of data span February 1st to April 30th 
before and after the implementation of SAH order in the state of California. First, multivariate 
models were utilized to account for the common unobserved heterogeneity shared observational 
level and hour level for four different lanes. Second, given the strong interdependency between 
four lanes, endogeneity was explicitly considered. Third, two sample t-test, Fisher’s F-Test and 
Welch’s T-Test were used to determine the SAH order on traffic speed. Fourth, due to the model 
complexity resulting from multivariate models with the inclusion of endogeneity, the integrated 
nested Laplace approximation (INLA) algorithm was used over the typical Bayesian hierarchical 
model based on Markov Chain Monte Carlo (MCMC) approach. Finally, to assess the 
performance of models, various evaluation criteria were employed including, Deviance 
Information Criteria (DIC), Watanabe-Akaike Information Criteria (WAIC), and Log pseudo 
Marginal Likelihood (LPML).  
 
 
 
DATA DESCRIPTION 
 

The present study collected the data from three unique sources. The real-time traffic 
characteristic information, such as the speed and volume, was obtained from the Caltrans’ PeMS 
website (www.pems.dot.ca.gov, 2020). The data are collected via loop stations located the 
freeway(s) at specific locations including on-ramps, off-ramps, and along the freeway itself. To 
limit the potential recordings of duplicate vehicles resulting from the weaving actions, the 
authors took great care to utilize data collected from stations that are located further away from 
on-, off-ramps as well as freeway interchanges. (Golob et al., 2004), which could ensure a more 
stable traffic volume and speed from the basic freeway segments. For illustration purpose, the 
two parallel freeways (east to west) in which data were collected consist of the I-210 and the 
CA-60 freeways within the Los Angeles County of District 7 in California. Overall, 56 loop 
stations were selected from the three freeways that contain 4 lanes in each direction. These 
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stations go through a wide range of land-use types such as commercial, industrial, and residential 
which provide extensive volume variations. 

As mentioned in the introduction section, the weather situation is also an important factor 
that greatly influences traffic speed. It is for this reason why the authors chose to include various 
weather conditions into the models. The weather information was collected from Weather 
Underground (www.weatherunderground.com) that included data such as Temperature, 
Humidity, Windspeed, Pressure, and Total Precipitation. Additionally, data regarding the daily 
confirmed cases of Covid-19 is hypothesized to have an impact on traffic volume due to those 
being tested for Covid-19 would have to visit a testing center or hospital to confirm their 
diagnosis. The daily confirmed cases of Covid-19 in Los Angeles County were collected from 
the Centers for Disease Control and Prevention (CDC) website (www.cdc.gov). A summary of 
all variables used within the analysis can be found in Table 1. 
 
   
Table 1. Descriptive Statistics of Collected Data  
Variable Description Mean (SD) Min Max 
Lane 1 Average Speed (L.S.1) Average Hourly Vehicles Speed 

in Each Lane (mph) 
69.94 
(9.17) 

4.3 78.9 

Lane 2 Average Speed (L.S.2) 65.25 
(8.58) 

3.5 77.5 

Lane 3 Average Speed (L.S.3) 58.38 
(9.65) 

4.4 77.2 

Lane 4 Average Speed (L.S.4) 57.58 
(8.50) 

10.2 72.5 

Total Flow Hourly Traffic Flow 3240.32 
(1864.15) 

217 7308 

Time The count of hours for each day 12.5  
(6.92) 

1 24 

Days The count of days from February 
1st to April 30th 

45.5 
(25.98) 

1 90 

Daily Confirmed The number of COVID-19 new 
infections in Los Angeles County 
for each day 

258 
(365.69) 

0 1509 

Temperature The average temperature of the 
day in degrees Fahrenheit 

59.38 
(8.46) 

35 97 

CA-60 Two freeways in Los Angeles 
County 

2158 (50.0%) 
 

I-210 2158 (50.0%) 
 

SAH0 Stay at Home policy issued on 
March 19th ;0 represents the days 
before the policy was issued; 1 
represents the days after the 
policy was issued 

2252 (52.2%) 
 

SAH1               2064 (47.8%) 

Note: SD represents Standard Deviation; Min represents minimum; Max represents maximum. 
 

 



5 
 

In addition to the COVID-19 confirmed case number and pertinent policy like SAH, the 
paper also considers the weather-related info and its impact on the speed. Amongst a set of relative 
factors, only the temperature data were collected due to two reasons. First, the temperature has 
been shown in previous literature to exert strong influence on the speed (Nasimifar et al., 2018; 
Bodin et al., 2016; Greenfield et al., 2012; Lin et al., 2015). Second, other important info such as 
precipitation, vision, and dew point etc. are pretty stable at the study time period in southern 
California due to its unique geographical nature. Such near-zero-variance variables were excluded 
from the model development since they have less predictive power and tend to cause a model to 
crash (Kuhn, M., & Johnson, K. (2013). It is the hope of authors that the employment of 
temperature as the weather representative variable can capture the influence of other related 
covariates to some degree as well. 

 
3. METHODOLOGY 

 
As previously mentioned, the primary goal of this study is to evaluate the impact of COVID-

19 and the related factors such as SAH policy, the number of COVID-19 cases per day, and the 
weather conditions on the freeway traffic speed. For this purpose, a two-sample t-test was first 
performed to determine the significance of SAH order on traffic speed. Second, under the 
framework of INLA, a multivariate joint model with endogeneity was developed to determine 
the impact of associated factors on traffic speed. Third, to evaluate the model performance, 
distinct goodness-of-fit assessment measures were adopted. The details of each section are 
shown below.  

 
3.1. Model Specification 
 
To develop models of four lanes of both freeways (CA-60 and I-120), few independent variables 
expected to impact one or all the four lanes were incorporated. This study employed multivariate 
framework with the Gaussian distribution as shown below:  
 
                                                               𝑦𝑦 = 𝛽𝛽0 + 𝜷𝜷𝜷𝜷 + 𝜀𝜀                                                                (1) 
 
Where y represents a matrix consisting of lane-mean speed of four lanes, and β0 represents a global 
intercept vector for four different lanes. β is the regression coefficient vector, X is the covariate 
matrix, and ε represents the white noise. To better understand the multivariate models with 
endogeneity and different covariates, Equation 4 can be further expanded to the following 
expressions: 
 
 
 
                 𝑦𝑦𝐿𝐿1= 𝛽𝛽0𝐿𝐿1+ 𝛽𝛽𝐿𝐿1𝜷𝜷 + 𝛽𝛽𝐿𝐿2𝑦𝑦𝐿𝐿2+  𝜀𝜀𝑂𝑂𝐿𝐿1 + 𝜀𝜀𝐻𝐻𝐿𝐿1+ 𝛽𝛽𝑆𝑆𝑆𝑆𝐻𝐻1 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆 + 𝛽𝛽𝐷𝐷𝐷𝐷1 ∗ 𝐷𝐷𝐷𝐷 + 𝛽𝛽𝐷𝐷𝐷𝐷𝐷𝐷1 ∗
𝐷𝐷𝐷𝐷𝑦𝑦 + 𝛽𝛽𝑆𝑆𝑆𝑆𝐻𝐻∗𝐷𝐷𝐷𝐷1 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆 ∗ 𝐷𝐷𝐷𝐷 + 𝛽𝛽𝑆𝑆𝑆𝑆𝐻𝐻∗𝐷𝐷𝐷𝐷𝐷𝐷1 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆  ∗ 𝐷𝐷𝐷𝐷𝑦𝑦                                                            (2) 
 
        𝑦𝑦𝐿𝐿2= 𝛽𝛽0𝐿𝐿2+𝛽𝛽𝐿𝐿2𝜷𝜷 + 𝛽𝛽𝐿𝐿1𝑦𝑦𝐿𝐿1  + 𝛽𝛽𝐿𝐿3𝑦𝑦𝐿𝐿3 + 𝜀𝜀𝑂𝑂𝐿𝐿2 + 𝜀𝜀𝐻𝐻𝐿𝐿2 + 𝛽𝛽𝑆𝑆𝑆𝑆𝐻𝐻2 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆 + 𝛽𝛽𝐷𝐷𝐷𝐷2 ∗ 𝐷𝐷𝐷𝐷 + 𝛽𝛽𝐷𝐷𝐷𝐷𝐷𝐷2 ∗
𝐷𝐷𝐷𝐷𝑦𝑦 + 𝛽𝛽𝑆𝑆𝑆𝑆𝐻𝐻∗𝐷𝐷𝐷𝐷2 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆 ∗ 𝐷𝐷𝐷𝐷 + 𝛽𝛽𝑆𝑆𝑆𝑆𝐻𝐻∗𝐷𝐷𝐷𝐷𝐷𝐷2 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆  ∗ 𝐷𝐷𝐷𝐷𝑦𝑦                                                            (3) 
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       𝑦𝑦𝐿𝐿3= 𝛽𝛽0𝐿𝐿3+𝛽𝛽𝐿𝐿3𝜷𝜷+  𝛽𝛽𝐿𝐿2𝑦𝑦𝐿𝐿2 +  𝛽𝛽𝐿𝐿4𝑦𝑦𝐿𝐿4 + 𝜀𝜀𝑂𝑂𝐿𝐿3 + 𝜀𝜀𝐻𝐻𝐿𝐿3 + 𝛽𝛽𝑆𝑆𝑆𝑆𝐻𝐻3 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆 + 𝛽𝛽𝐷𝐷𝐷𝐷3 ∗ 𝐷𝐷𝐷𝐷 + 𝛽𝛽𝐷𝐷𝐷𝐷𝐷𝐷3 ∗
𝐷𝐷𝐷𝐷𝑦𝑦 + 𝛽𝛽𝑆𝑆𝑆𝑆𝐻𝐻∗𝐷𝐷𝐷𝐷3 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆 ∗ 𝐷𝐷𝐷𝐷 + 𝛽𝛽𝑆𝑆𝑆𝑆𝐻𝐻∗𝐷𝐷𝐷𝐷𝐷𝐷3 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆  ∗ 𝐷𝐷𝐷𝐷𝑦𝑦                                                             (4) 
 
               𝑦𝑦𝐿𝐿4= 𝛽𝛽0𝐿𝐿4+  𝛽𝛽𝐿𝐿4𝜷𝜷 + 𝛽𝛽𝐿𝐿3𝑦𝑦𝐿𝐿3 +  𝜀𝜀𝑂𝑂𝐿𝐿4 + 𝜀𝜀𝐻𝐻𝐿𝐿4  + 𝛽𝛽𝑆𝑆𝑆𝑆𝐻𝐻4 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆 + 𝛽𝛽𝐷𝐷𝐷𝐷4 ∗ 𝐷𝐷𝐷𝐷 + 𝛽𝛽𝐷𝐷𝐷𝐷𝐷𝐷4 ∗
𝐷𝐷𝐷𝐷𝑦𝑦 + 𝛽𝛽𝑆𝑆𝑆𝑆𝐻𝐻∗𝐷𝐷𝐷𝐷4 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆 ∗ 𝐷𝐷𝐷𝐷 + 𝛽𝛽𝑆𝑆𝑆𝑆𝐻𝐻∗𝐷𝐷𝐷𝐷𝐷𝐷4 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆  ∗ 𝐷𝐷𝐷𝐷𝑦𝑦                                                            (5) 
 
 
Where subscripts 𝐿𝐿1, 𝐿𝐿2, 𝐿𝐿3, 𝐿𝐿4 represents four different lanes of freeway,  𝛽𝛽0 is the global intercept, 
𝛽𝛽 is the regression coefficient vector, X is the covariate matrix, SAH is stay at home, DC is daily 
confirmed cases of COVID-19, and ε represents the white noise or random effects. The presence 
of endogeneity can be denoted by the statistical significance of  𝛽𝛽𝐿𝐿1, 𝛽𝛽𝐿𝐿2, 𝛽𝛽𝐿𝐿3 and 𝛽𝛽𝐿𝐿4. 
 
In multivariate framework, both random effects of observational (𝜀𝜀𝑂𝑂𝐿𝐿1 , 𝜀𝜀𝑂𝑂𝐿𝐿2 , 𝜀𝜀𝑂𝑂𝐿𝐿3 , 𝜀𝜀𝑂𝑂𝐿𝐿4) and hour 
levels (𝜀𝜀𝐻𝐻𝐿𝐿1 , 𝜀𝜀𝐻𝐻𝐿𝐿2 , 𝜀𝜀𝐻𝐻𝐿𝐿3 , 𝜀𝜀𝐻𝐻𝐿𝐿4) follow a multivariate normal distribution. The hierarchical process 
for both levels can be presented as follows: 
 
                                                                     𝜀𝜀𝑗𝑗~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐷𝐷𝑁𝑁 (𝜇𝜇,∑)                                                                   (6)             
 
Where  
 

                                    𝜀𝜀𝑗𝑗 = �

𝜺𝜺𝐿𝐿1
𝜺𝜺𝐿𝐿2
𝜺𝜺𝐿𝐿3
𝜺𝜺𝐿𝐿4

�, 𝜇𝜇 = �

𝜇𝜇𝐿𝐿1
𝜇𝜇𝐿𝐿2
𝜇𝜇𝐿𝐿3
𝜇𝜇𝐿𝐿4

�, ∑ = �

𝜎𝜎11
𝜎𝜎21
𝜎𝜎31
𝜎𝜎41

𝜎𝜎12
𝜎𝜎22
𝜎𝜎32
𝜎𝜎42

𝜎𝜎13
𝜎𝜎23
𝜎𝜎33
𝜎𝜎43

𝜎𝜎14
𝜎𝜎24
𝜎𝜎34
𝜎𝜎44

�                                      (7) 

 
 
In above equations, 𝜀𝜀𝑗𝑗 is the independent random effect which captures the extra-Poisson 
heterogeneity among observation or hour levels, 𝜇𝜇 is the vector of mean values for four different 
lanes,  ∑ is the variance-covariance matrix. The inverse of the variance-covariance matrix 
represents the precision matrix and can be represented by: 
 
                                                                 ∑−1~𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝐷𝐷𝑁𝑁𝑎𝑎(𝐼𝐼, 𝐽𝐽)                                                                    (8) 
 
Where I is the identity matrix of J×J with J is degree of freedom (Congdon, 2006). 
 
 
 
 
3.2. Two Sample T-Test 

 
 To determine if the SAH order has a significant effect on traffic speed, a two-sample t-
test is conducted. To determine which t-test will be better implemented, Fisher’s F-Test is 
needed to first determine the homogeneity of variance (Box, 1953) between the traffic speed 
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prior to and following the SAH order. The results of the F-Test will determine which T-Test 
would be superior with the given data. 
 
3.2.1. Fisher’s F-Test 
 Fisher’s F-Test computes the ratio between the explained variance, in this case would be 
the traffic speed(s) before the SAH order was issued, and the unexplained variance, or the traffic 
speed(s) after the SAH order being issued. The F-Test is performed with the following equation 
(Armitage and Berry, 2001): 

                                                                            𝐹𝐹 = 𝑆𝑆𝑏𝑏
2

𝑆𝑆𝑎𝑎2
                                                                            (9) 

 
 
Where S2

b represents the explained variance and S2
a represents the unexplained variance. The F-

value calculated with Equation (1) is compared to the corresponding F-Table’s value unexplained 
variance. If the F-Table’s value of S2

b is less than the calculated F-value from Equation (1), then 
it is necessary reject the null hypothesis. In this study, the null hypothesis refers to the SAH order 
having a significant effect on traffic speed. 
 
3.2.2 Welch’s Two-Sample T-Test 
 There are two well-known methods for performing a two-sample t-test. The first is known 
as the Classical t-test, also known as the Student’s T-Test, and is used primarily between samples 
whose variances are equal (Efron, B., 1969). The Second is Welch’s T-Test, contrary to the 
Classical T-Test, Welch’s T-Test performs better with samples whose variances are unequal 
(Welch, 1947). Welch’s T-Test involves the generating a t-value and the degrees of freedom as 
shown below: 
 
 
                                                                         𝑎𝑎 = 𝑚𝑚𝑏𝑏−𝑚𝑚𝑎𝑎

�𝑆𝑆𝑏𝑏
2

𝑛𝑛𝑏𝑏
+𝑆𝑆𝑎𝑎

2

𝑛𝑛𝑎𝑎

                                                                        (10) 

 

                                                             𝑑𝑑𝑑𝑑 =
�𝑆𝑆𝑏𝑏

2

𝑛𝑛𝑏𝑏
+ 𝑆𝑆𝑎𝑎2

𝑛𝑛𝑎𝑎
�

� 𝑆𝑆𝑏𝑏
2

𝑛𝑛𝑏𝑏
2(𝑛𝑛𝑏𝑏−1) + 𝑆𝑆𝑎𝑎2

𝑛𝑛𝑎𝑎2(𝑛𝑛𝑎𝑎−1)�
�                                         (11) 

 
 
Where mb and ma represent the sample means of traffic speed before and after the SAH order was 
issued respectively. The samples sizes before (nb) and after (na) are also utilized in both equation 
(2) and (3). To determine if the results from Welch’s T-Test are effective, the degrees of freedom 
between the two variances must be greater than 5 (Allwood, 2008). Additionally, the predictive 
value (p-value) is also calculated to act as another form of verification in determining if the SAH 
order has a significant impact on traffic speed. 
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3.3 Evaluation Criteria 
Various criteria employed in the present study for assessment of predictive accuracy and 
goodness-of-fit are illustrated in the following sections. 

3.3.1. Deviance Information Criteria (DIC) 
  
DIC (Deviance Information Criteria) is a Bayesian generalization of Akaike Information Criteria 
(AIC) () used to evaluate the complexity and goodness-of-fit of the models. This criterion was 
developed by Spiegelhalter (2002) and can be written as: 
 
                                                                       𝐷𝐷𝐼𝐼𝐷𝐷 = (𝐷𝐷�) + 𝑃𝑃𝐷𝐷                                                        (12) 
 
Where (𝐷𝐷�) represents the posterior mean deviance and PD represents the effective coefficient 
number. The models which display a larger DIC value (higher than +7) is less efficient in its 
abilities to accurately predict additional data (Spiegelhalter et al., 2002). 
 
3.3.2 Watanabe-Akaike Information Criteria (WAIC) 
 WAIC is another heavily used criteria to determine the efficiency of hierarchical models. 
As mentioned before, WAIC, like DIC, is derived from AIC with the primary difference being 
that WAIC employs a posterior distribution rather than a point estimation (Watanabe, S., 2013). 
This allows WAIC to be a more convenient approximation for cross-validation since it uses In-
Of-Sample data (Aregay et al., 2017). WAIC is based on pointwise predictive density 
(Watanabe, S., 2013) which is set on a logarithmic scale that is commonly used as the baseline 
value to estimate predicted density (Gelman, A. et al., 2014). The Log Pointwise Predictive 
Density (LLPD) is calculated with the following equation: 
 
                                                         𝐿𝐿𝐿𝐿𝑃𝑃𝐷𝐷 = ∑ log �1

𝑆𝑆
∑ 𝑝𝑝(𝑦𝑦𝑖𝑖|𝜃𝜃𝑠𝑠)𝑆𝑆
𝑠𝑠=1 �𝑛𝑛

𝑖𝑖=1                                               (13)       
 
Through the assumption that the number of simulations draws S is large enough to completely 
encase the posterior distribution, only then is it possible to allow for the interchangeability 
between the LLPD and the computed LLPD of the data from the Equation (13). It is for this 
reason that this criterion is similar to DIC in how it, explains model efficiency through a lower 
LLPD value calculated with each model (Gelman et al., 2014). 
 
3.3.3 Log pseudo Marginal Likelihood (LPML) 
 

 The final criterion, LMPL, originally proposed by Geisser and Eddy in 1979, it has been 
widely utilized in numerous studies (Gelfand and Mallick, 1995; Zhao and Hanson, 2011). 
Unlike the previously mentioned model efficiency criteria, LPML performs cross-validation 
using OOS data via leave one out method. LPML is calculated based on the Conditional 
Predictive Ordinate (CPO) which is primarily used to diagnose and select models 
(Muthukumarana and Tiwari, 2016) is can be calculated through the equation (Zhang et al, 
2017): 
 
                                                      𝐷𝐷𝑃𝑃𝐶𝐶𝑖𝑖 = ∫𝑑𝑑(𝑦𝑦𝑖𝑖|𝜃𝜃, 𝑥𝑥𝑖𝑖)𝜋𝜋�𝜃𝜃|𝐷𝐷(−𝑖𝑖)�𝑑𝑑𝜃𝜃                                             (14)     
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In this equation, θ is the unknown parameter of interest; yi and xi are the response and covariate 
vectors; D(-i) is the data set without the ith observation and π(θ| D(-i)) is the posterior density of θ 
based on data D(-i). LPML is defined as: 
 
                                                          𝐿𝐿𝑃𝑃𝐿𝐿𝐿𝐿 =  ∑ log(𝐷𝐷𝑃𝑃𝐶𝐶𝑖𝑖)𝑛𝑛

𝑖𝑖=1                                                    (15)                
 
Unlike the models derived from AIC, LPML represents models with higher efficiencies and 
capabilities to predict additional data accurately with lower values. Besides, by utilizing OOS 
data for cross-validation, there isn’t a need to apply a penalty for the number of models 
generated to take data bias into account (Jiang et al., 2016). 
 

 
4. Results 
 

The observed homogeneity between the variances of traffic speed before and after the SAH 
order was issued was first performed by Fisher’s F-Test, and then verified by Welch’s T-Test are 
displayed to illustrate the direct impact the SAH order itself had on the overall traffic speed among 
the two previously mentioned freeways. Additionally, the multivariate-joint model to outline the 
effects that SAH order as well as the aforementioned variables outlined in Table 1 is supplied. 
Lastly, each model generated, one for each freeway, is evaluated using the previously mentioned 
model evaluation criteria and the results are presented. 

 
4.1 Two-Sample T-test  
 Prior to using the T-Test to understand the direct effects that the SAH order had on traffic 
speed, it is necessary to first perform Fisher’s F-Test. As mentioned in the Methodology, based on 
the results from Fisher’s F-Test, the proper T-Test can then be utilized to demonstrate the effects 
of the SAH order on traffic speed. The values resulting from Fisher’s F-Test are shown in Table 
2. 
 
Table 2. F-test for Homogeneity in Variances 

Freeway I-10 I-210 
Lane Speed LS.1 LS.2 LS.3 LS.4 LS.1 LS.2 LS.3 LS.4 

F 8.36 6.44 1.96 2.51 6.86 2.61 1.36 6.33 
DF (0) 1125 1125 1125 1125 1125 1125 1125 1125 
DF (1) 1031 1031 1031 1031 1031 1031 1031 1031 

P-values <2e-16 <2e-16 <2e-16 <2e-16 <2e-16 <2e-16 5.3e-07 <2e-16 
Notes: 1. F values were derived from equation (1). 
2. Here “DF (0)” indicates the degree of freedom of the observations before the SAH order was issued, and “DF (1)” 
represents the observations after the SAH order was issued. 
3. Statistically significant variables with p-value less than 0.05 were shown in font bold, and these tested variables 
reject the null hypothesis. The table shows that there is a significant difference in the variance of traffic flow before 
and after the SAH policy was established. 
 

As shown in Table 2 are the F-values, p-values, and the degree of freedom (DF) between 
traffic speed before and after the SAH order was issued. In addition to the F-values for both 
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freeways, the variance of the total traffic speed is calculated and then compared with the F-value. 
As mentioned in the Methodology, this is to ensure that there is a significant change in traffic 
speed based on whether or not the null hypothesis is rejected. The predictive values (p-values) are 
all less than 0.05 which indicates that each prediction of traffic speed within each freeway and lane 
falls within a 95% confidence interval (Wasserstein, R. L. & Lazar, N. A., 2016). Due to the 
variance of the traffic speed before and after the SAH order, as seen in Table 2 with each F-value 
not equaling to 1, the appropriate T-Test to perform is Welch’s T-Test, whose results are presented 
in Table 3. 
 
Table 3. Welch’s Two-Sample T-Test Outcomes 

Freeway I-10 I-210 
Lane Speed LS.1 LS.2 LS.3 LS.4 LS.1 LS.2 LS.3 LS.4 
t -18.6 -14.71 -5.75 -5.87 -12.6 -7.99 0.31 -7.4 
DF 1411.66 1491.55 2037.93 1919.59 1470.88 1899.34 2146.64 1497.73 
P-values <2e-16 <2e-16 1.0e-08 5.1e-09 <2e-16 2.3e-16 0.76 2.3e-13 

Notes: 1. The t values were derived from equation (2) and equation (3). 
2. The “DF” stands for the degree of freedom of the hourly vehicle speed observations. 
 
 Similar to the results illustrated in Table 2, Table 3 also summarizes the DF, t-values, and 
p-values that resulted from Welch’s t-Test. As seen in Table 3, the DF of both freeways and all 
lanes involved are all greater than 5 which indicates the effectiveness of the T-Test. The presented 
p-values are, again, have the same criteria for statistical significance to land within the 95% 
confidence interval as mentioned in Table 2. In addition, the p-values of all lanes from both 
freeways with the exception of lane 3 from the I-210 freeway. This could be explained as different 
lanes could have different purposes as explored by Senathipathi et al. (2010). To facilitate the 
readers, the frequency of traffic speed is visualized by using box and whisker’s plot as shown in 
Figure 1. 
 

 
Figure 1. Average Vehicles Speed on Each Lane of 2 Highway Stations Before and After the 
SAH Policy from February 1st to April 30th. 
 
 The box and whisker’s plot in Figure 1, showcases the frequencies of traffic speed of 
vehicles recorded for each lane within both freeways in terms of the first quartile, mean, third 
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quartile as well as one standard deviation both before and after the first and third quartiles, 
respectively. The statistical outliers are represented as individual dots along the tails created by the 
aforementioned standard deviations. The traffic speeds before the SAH order are represented as 
the teal box on the left, with the legend representing it as SAH0. Likewise, the traffic speeds 
recorded after the SAH order are in yellow and are represented as SAH1 within the legend. The y-
axis represents the average speed recorded for that day. 
 Upon closer inspection of Figure 1, there are clear differences between the traffic speeds 
before and after the SAH order was given within lanes 1 and 2 from each freeway. Although lanes 
3 and 4 do have statistical differences as seen in Table 3, except for lane 3 from the I-210 freeway, 
these differences are less apparent. Another apparent aspect is the differences in traffic speeds 
within each lane. This solidifies the previous statement following Table 3 and is confirmed from 
previous literature (Hurdle et al., 1997; Jiang, 1999).  
 
4.2 Model Estimates 
 
Table 4. Summary of the Four Lanes Speed Joint Model 

 CA-60 I-210 

Variable 
β (LS.1) β (LS.2) β (LS.3) β (LS.4) β (LS.1) β (LS.2) β (LS.3) β (LS.4) 
Mean 
(SD) 

Mean 
(SD) 

Mean 
(SD) 

Mean 
(SD) 

Mean 
(SD) 

Mean 
(SD) 

Mean 
(SD) 

Mean 
(SD) 

 Fixed Effects 

Intercept -0.002 
(0.949) 

3.1 
(1.192) 

-3.227 
(1.413) 

7.765 
(1.306) 

8.946 
(1.148) 

-3.868 
(1.704) 

22.821 
(2.33) 

37.085 
(1.67) 

Total Flow 2.537 
(0.393) 

-0.475 
(0.338) 

-3.397 
(0.503) 

3.687 
(0.435) 

-4.867 
(0.453) 

2.703 
(0.545) 

4.316 
(0.835) 

-16.372 
(0.57) 

SAH 2.54 
(0.574) 

1.098 
(0.45) 

0.696 
(0.687) 

-2.728 
(0.569) 

8.644 
(0.638) 

-1.907 
(0.727) 

-22.748 
(0.929) 

7.723 
(0.601) 

Day -0.017 
(0.007) 

0.024 
(0.005) 

-0.013 
(0.008) 

0.01 
(0.007) 

0.018 
(0.007) 

-0.025 
(0.007) 

-0.017 
(0.01) 

0.02 
(0.006) 

Daily 
Confirmed 

63.245 
(11.902) 

-20.089 
(9.768) 

25.456 
(13.164) 

-33.959 
(11.779) 

55.782 
(12.274) 

5.982 
(12.394) 

-93.12 
(15.434) 

24.298 
(11.011) 

SAH * 
Daily 

Confirmed 

-62.639 
(11.915) 

20.302 
(9.775) 

-27.303 
(13.174) 

35.188 
(11.791) 

-53.644 
(12.283) 

-6.828 
(12.391) 

89.649 
(15.447) 

-22.397 
(11.015) 

SAH * Day 0.011 
(0.011) 

-0.035 
(0.009) 

-0.006 
(0.013) 

0.038 
(0.011) 

-0.141 
(0.012) 

0.051 
(0.013) 

0.344 
(0.018) 

-0.149 
(0.011) 

Temperature -2.205 
(0.641) 

-0.02 
(0.491) 

1.357 
(0.729) 

-2.245 
(0.628) 

4.006 
(0.578) 

-0.799 
(0.584) 

-4.922 
(0.819) 

2.47 
(0.491) 

LS.1   
  

0.655 
(0.009) 

  
  

  
  

  
  

0.787 
(0.014) 

  
  

  
  

LS.2 0.991 
(0.007) 

  
  

0.174 
(0.019) 

  
  

0.821 
(0.01) 

  
  

0.45 
(0.021) 

  
  

LS.3   
  

0.279 
(0.008) 

  
  

0.828 
(0.006) 

  
  

0.244 
(0.013) 

  
  

0.314 
(0.01) 

LS.4   
  

  
  

0.931 
(0.019) 

  
  

  
  

  
  

0.517 
(0.035) 

  
  

 Random Effects 
Observation.

ID 
19.941 
(3.972) 

26.692 
(6.803) 

27.464 
(6.014) 

10.743 
(4.869) 

18.412 
(5.267) 

22.895 
(6.387) 

23.882 
(5.887) 

11.752 
(4.814) 

Hour.ID  0.714 
(0.248) 

1.979 
(0.707) 

0.494 
(0.405) 

1.406 
(0.586) 

0.304 
(0.105) 

0.488 
(0.152) 

0.153 
(0.047) 

0.248 
(0.074) 
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 Goodness-of-fit Criteria 
DIC 40163.98 42437.01 

WAIC 40199.17 42502.98 
LPML -20099.44 -21253.67 

Notes: 1. SD refers to Standard Deviation.  
2. The estimates in bold font represent the variables that have a significant impact on lane speed at a 95% level. 
 
   
Upon detailed inspection of Table 4, the first thing that stands out was the statistical significance 
of the endogeneity show by the immediate adjacent lanes. As seen in Table 4, it is clear that any 
increase in traffic speed also influences its adjacent lanes in which it also increases their speed as 
well. Moridpour et al. (2010) performed a study to understand the effects of similar endogenic 
variables. One of their conclusions supports the findings of Table 4 in that the endogenic 
variables are significant and that any increase in speed in one lane will similarly influence its 
adjacent lanes. In addition to the mentioned fixed variables that are significant among all lanes 
within both freeways, the random variables that consist of the observation id, as well as the hour 
id, are also statistically significant among all lanes presented. 
 Among each freeway presented, it is clear that different variables are considered 
significant within specific lanes. This can be explained that in addition to each lane having a 
specific purpose but the freeways, despite being within the same county, are located in different 
areas within the county and therefore will have a different population with different needs. This 
is apparent with Temperature, as the temperature increases, there is both an increase in specific 
lanes as well as a decrease in traffic speed in others. This same effect is present in other variables 
such as the implementation of the SAH order, the Daily confirmed, as well as total flow to name 
a few. 
 The model efficiency criteria utilized in this study do produce interesting results, both 
DIC and WAIC scores for each freeway are similar to one another. While this is expected due to 
both of these criteria being derived from AIC, it does aid in justifying the use of random 
parameters as well as the use of endogenic variables within the model to ensure model prediction 
accuracy (Vehtari  et al., 2015). This also solidifies the idea of multivariate-joint models being 
capable of producing accurate results that are more complex than their simple fixed parameter 
counterparts (Pettitt et al., 2002; Hickey et al., 2018). 
 In addition to understanding the endogenic variables within each lane and its effects on 
one another, it is also important to understand the overall correlation and covariance between 
each lane. Table 5 highlights the correlation and covariance between each lane within both 
freeways. 
 
 
 
Table 5: Correlation and Covariance Matrix Between the Coefficients of Different Lanes’ 
Unobserved Heterogeneity 
 

Observation.I
D 

CA-60 I-210 
β 
(LS.1) β (LS.2) β (LS.3) β (LS.4) β (LS.1) β (LS.2) β (LS.3) β (LS.4) 

β (LS.1) 1.00  
1.4e-04 0.28  0.00 0.15 1.00  

4.5e-04 -0.05  0.01  -0.86 

β (LS.2) 2.2e-05 1.00  0.00 -0.70 -1.2e-05 1.00  0.01 0.20 
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4.2e-05 1.3e-04 

β (LS.3) 3.5e-09 1.2e-09 1.00  
3.2e-05 -0.61 2.1e-06 1.3e-06 1.00  

1.0e-04 -0.20 

β (LS.4) 4.2e-11 -1.1e-10 -8.1e-11 1.00  
5.5e-16 -6.3e-06 7.9e-07 -7.0e-07 1.00  

1.2e-07 
Notes: 1. The upper triangle of the matrix shows the correlation coefficients of the estimates of Observation ID, and 
the gray grids in the lower triangle of the matrix show the covariance. Correlation coefficients and covariances are 
listed in the diagonal grids of the matrix at the same time.  
2. Highly correlated estimates with correlation coefficients greater than 0.6 are marked as a bold font. 
 
  
Table 5 shows both the correlation and the covariance that each lane has on one another within 
each freeway. The upper left portion of each freeway’s matrix shows the correlation between two 
lanes and those values whose absolute value is greater than 0.6 are considered highly correlated 
and are bolded. The covariances between any two lanes are located in the lower-left matrix with 
the gray filling. 
  
Upon review of Table 5, it is clear that lane 1 from the CA-60 freeway is not highly correlated 
with any other lane however lanes 2 and 3 are highly correlated with lane 4. More specifically 
these lanes are negatively correlated which contradicts the findings from Table 4. Additionally, 
lane 1 is highly correlated with lane 4, again in a negative light, which isn’t adjacent. This suggests 
that in addition to immediate adjacent lanes affecting one another, further lanes could also affect 
one another. 
 
5. Conclusions 
 

This study performs a multivariate model in efforts to understand the impact of Covid-19 on 
traffic speed, more specifically the impact that the SAH order as well as the daily confirmed 
cases have on traffic speed. The data utilized were obtained from the PeMS website regarding 
the CA-60 and I-210 freeways in Los Angeles County, the daily confirmed cases were collected 
from the CDC website and the weather data originated from the weather underground. The 
observation dates range from February 1, 2020 to April 30, 2020. Based upon the results, 
conclusions are drawn as follows: 

1. It is rather unclear that the SAH order was a direct cause of higher traffic speeds as it is 
clear that the implementation of the SAH order has both increased and decreased the 
traffic speed depending on the lane. 

2. There is a clear effect that the traffic speed from one lane affects its immediate 
neighboring lanes. However, newer evidence suggests that traffic speed from one lane 
may also affect more than just the nearest proximity lane. 

3. With the given data and variables utilized in this study, it is clear that using both 
endogenic variables and random variables improve upon the model prediction accuracy 
due to their statistical significance. 

 
In addition to the aforementioned findings, there are few caveats required in this study. First, 

weather related variables such as wind speed and precipitation have been included in numerous 
amounts of literature and would be beneficial to include such variables in future research. 



14 
 

Second, generating a new model that includes the effect of the endogeneity produced by non-
adjacent lanes. This will ensure a more complex model and could potentially alter the predictive 
capabilities of this modeling method. Third, the utilization of other multivariate-joint modeling 
methods such as the use of a MCMC could provide a more thorough analysis due to its high 
accuracy rate with the only drawback being the computation time. Fourth, in addition to 
performing a space-time analysis of traffic speed, an analysis regarding the impact of Covid-19 
on traffic volume, traffic accident frequency as well as accident severity could only prove to be 
beneficial to society not only for today, amidst the pandemic, but benefit future policies as well.   
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