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ABSTRACT

This paper introduces a problem that motivates the use of parallelism when invoking commercial
solvers. It formulates the network vulnerability identification problem as a bilevel programming
problem. Although a customized genetic algorithm (GA) is an effective metaheuristic for this NP-
hard problem, it is not typically efficient because it assesses population member fitness functions
sequentially. Moreover, our problem’s fitness function is separable over the shipments being routed.
This work documents several endeavors to parallelize this latter aspect of optimal shipment routing,
ultimately identifying an opportunity with specific recommendations for software developers to
advance the state of optimization software and computing capability.
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INTRODUCTION

Advances in technology and computing have enabled more powerful computing resources, allow-
ing analysis efforts to examine and solve larger problems with increasing levels of computational
complexity. A component of this improved capability is the distribution of computational expense
across resources to reduce overall execution time of processing tasks. Herein, we explore approaches
to parallelism that may be implemented within a bilevel modeling framework to more efficiently
solve the underlying problem.

Motivating and supporting our research, the United States Transportation Command is a functional
commands that supports warfighting commands, military services, and defense agencies. As a com-
ponent of its globally integrated mobility operations, the command provides intratheater movement
of material and assets via aerial and seaborne platforms to respective air and sea ports of debarka-
tion in an area of operations (AOR). Once material and assets reach an AOR, they must traverse
a ground distribution network (e.g., railway, roads) to reach commanders who need them. Each
shipment has both preferred and required deadlines for delivery. Shipments delivered after required
deadlines are considered to be too late to provide practical value for the commander.
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A ground distribution network within an AOR is vulnerable to disruptions from natural events like
severe weather, benign events like refugee evacuations, and malign events like deliberate attacks
on network infrastructure. Such disruptions may temporarily prevent movement along portions of
the network, preventing its use until one can remove obstructions and/or affect repairs.Such events
represent vulnerabilities to material distribution, and the most impactful disruptions indicate the
greatest vulnerabilities of concern. It is important to identifying these vulnerabilities, both in terms
of their timing and location, so decision makers can take preemptive action to protect against them.

This research sets forth a bilevel mathematical programming model and accompanying metaheuris-
tic solution method to identify spatiotemporal vulnerabilities for a ground distribution network,
given a decision-maker seeking to effectively route material. The bilevel program is representative
of an attacker-defender, Stackelberg game theoretic framework, wherein an intelligent attacker with
a fixed number of limited-duration attacks disrupt a subset of arcs within a ground distribution
network, and a defender with full knowledge of the attacks optimally routes their shipments.

To solve instances of our model, this research uses a customized genetic algorithm to search the
upper-level attacker’s feasible region for high quality solutions. The quality of each solution of
attacker interdictions is determined by solving the lower-level defender’s material routing problem,
i.e., identifying a defender’s best response. To find each such solution to the lower-level problem,
one must invoke a commercial optimization solver, a computationally expensive procedure. This
computational burden motivates our exploration of alternative parallel processing procedures to
invoke a leading commercial solver to improve the computational efficiency of the underlying genetic
algorithm.

BILEVEL MATH PROGRAMMING FORMULATION

It is relevant to understand both the math program and the accompanying metaheuristic. This
section presents the bilevel mathematical programming formulation. Within it, an upper-level
attacker seeks to identify a fixed number of limited-duration attacks to maximize a single objective.
In response to and with full knowledge of the disruptive attacks, a lower-level defender routes
multiple shipments between respective origin-destination pairs while minimizing multiple objective
functions.

Prior to presenting the formulation, it is first necessary to define the following, sets, parameters,
and decision variables.

Sets

• K = {1, ...,K}: The set of shipments, indexed by k

• N = {1, ...,N}: The set of nodes within the transportation network, indexed by i or j. For
each shipment k, isk and idk respectively indicate its origin and destination nodes.

• A: The set of directed arcs in the network indexed by (i, j)
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• G(N,A): The complete network composed of nodes N and arcs A

• Π : The set of attacks conducted by an adversary, indexed by π, each of which is specific to a
location (i.e., an arc) and a time

• R(Π): The rational reaction set of alternative optimal solutions for the lower-level problem,
given Π

Parameters

• vk: the volume of shipment k

• bik: a parameter equal to 1 if shipment k originates at node i; -1 if shipment k must be
supplied to node i; and 0 otherwise

• lij: The length of arc (i, j)

• τij: The time required to traverse arc (i, j)

• t̂k: The earliest time at which shipment k is available to depart node isk

• tEA
k : The earliest time at which shipment k should arrive at node idk without incurring an
Early Arrival Penalty (EAPk)

• tLAk ∈ T : The latest time as which shipment k should arrive at node idk without incurring a
Late Arrival Penalty (LAPk)

• tRA
k ∈ T : The required arrival time of shipment k to node idk ∈ N . Whereas tLAk can be
violated with a penalty, tRA

k cannot be violated.

• δ : The duration of an adversary attack. All attacks are assumed to have a homogeneous
duration.

Decision Variables

• (i, j)π: The arc (i, j) disrupted by adversary attack π

• απ : The time at which adversary attack π begins against arc (i, j)π

• xijk: A binary decision variable equal to 1 if shipment k traverses arc (i, j), 0 otherwise

• tik: The time at which shipment k arrives at node i, if shipment k traverses the node; 0
otherwise

• EAPk: The penalty associated with receiving demand of shipment k prior to the earliest
arrival time (tEA

k ) at node idk

• LAPk: The penalty associated with receiving demand of shipment k after the latest arrival
time (tLAk ) at node idk
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• ykπ : A binary decision variable equal to 1 if shipment k traverses arc (i, j)π after an attack
during duration [απ, απ + δ], and 0 if it traverses the arc prior to the attack. (A shipment
cannot traverse an arc while it is being disrupted by an attack.)

Given the aforementioned notation, we formulate theBilevel Material Routing Problem (BMRP)
model as follows. The upper-level decision-maker seeks to solve the following problem:

max
π∈Π

f1(x) (1a)

s.t. (i, j)π ∈ A, ∀ π ∈ Π, (1b)

απ ≥ 0, ∀ π ∈ Π, (1c)

(x, t, EAP, LAP ) ∈ R(Π). (1d)

The attacker maximizes the shipment volume-weighted distance traversed by the lower-level decision-
maker. For |Π| attacks, Constraint (1b) limits each attack to an arc on the network, and Constraint
(1c) bounds the earliest start time for each attack on a continuous time horizon). Constraint (1d)
stipulates that a lower-level decision maker’s actions (x, t, EAP, LAP ) will belong to the reaction
set R(Π), i.e., the rational reaction set. For this formulation with multiple lower-level objective
functions, R(Π) is comprised of the set of Pareto optimal solutions for the lower-level problem,
determined by solving the math program expressed via (2a)–(2p).

min
t,x,y

EAP,LAP

(f1(x), f2(t), f3(EAP,LAP )) (2a)

s.t. f1(x) =
∑

(i,j)∈A

∑
k∈K

lijvkxijk, (2b)

f2(t) =
∑
k∈K

(
tidkk − t̂k

)
, (2c)

f3(EAP,LAP ) =
∑
k∈K

(EAPk + LAPk) , (2d)∑
j:(i,j)∈A

xijk −
∑

j:(j,i)∈A

xjik = bik, ∀ i ∈ N, k ∈ K, (2e)

tiskk = t̂k, ∀ k ∈ K, (2f)

tjk ≥ tik + τij −M(1− xijk), ∀ (i, j) ∈ A, k ∈ K, (2g)

EAPk ≥ vk

(
tEA
k − tidkk

)
, ∀ k ∈ K, (2h)

LAPk ≥ vk

(
tidkk − tLAk

)
, ∀ k ∈ K, (2i)

tidk ≤ tRA
k , ∀ k ∈ K, (2j)

tjk −M(1− xijk) ≤ απ +Mykπ, ∀ (i, j)π, k ∈ K, π ∈ Π, (2k)

tjk − τij +M(1− xijk) ≥ (απ + δ)ykπ, ∀ (i, j)π, k ∈ K, π ∈ Π, (2l)

EAPk, LAPk ≥ 0, ∀ k ∈ K, (2m)
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xijk ∈ {0, 1} , ∀ (i, j) ∈ A, k ∈ K, (2n)

tik ≥ 0, ∀ i ∈ N, k ∈ K, (2o)

ykπ ∈ {0, 1} , ∀ k ∈ K, π ∈ Π. (2p)

In the objective function (2a), the defender minimizes multiple objectives. The first objective (2b)
computes for the total shipment volume-distance traveled. The second objective (2c) calculates the
total transit time of material traversing the network. Of note, transit time measures the duration of
time that shipments are moving on arcs as well as any loiter time en route to their destinations. The
third objective (2d) accumulates any Early Arrival Penalties (EAPk) and Late Arrival Penalties
(LAPk) for shipments arriving prior to or later than their desired delivery window.

Constraint (2e) enforces conservation of flow. Constraint (2f) indicates the time when each shipment
k is available to depart node its origin, isk . Constraint (2g) imposes lower bounds on the time
at which each shipment k reaches every node j. If a shipment does not traverse an arc (i, j),
this constraint effectively yields tjk ≥ 0; otherwise, the earliest it can arrive at node j is (ti +
τij). It suffices to set M =

∑
(i,j)∈A τij. Of note, these constraints do not impose a lower bound

on a shipment’s arrival when traversing between two nodes in the absence of interdiction on the
connecting arc; a shipment may take more time to traverse the arc than τij if conditions warrant
(e.g., to wait for inclement weather or adversarial threat to dissipate), but it may never travel faster.

Constraints (2h) and (2i) respectively impose lower bounds on early arrival penalties (EAPk) and
late arrival penalties (LAPk). Informing these bounds are both the amount of material in a ship-
ment, vk, and the number of days a shipment is either early or late, compared to the predefined
delivery time window. This calculation leverages penalties linearly proportional to the magnitude
of a shipment’s earliness or lateness, but other alternatives are possible. Constraint (2j) enforces
that shipments must reach their respective destination nodes idk by their required arrival times.

Constraints (2k) and (2l) enforce three possible outcomes for each shipment and attack combination.
First, a shipment may not traverse the arc (xijk = 0). Second, it may traverse the arc and reach
node j no later than when when the attack begins, απ. Finally, it may traverse the arc, departing
node i no earlier than when the attack is complete, (απ + δ). If shipment k does not traverse arc
(i, j)π, any feasible ykπ-value satisfies both constraints. If a shipment k does traverse arc (i, j)π
prior to the beginning of the attack (i.e., ykπ = 0), Constraint (2k) imposes an upper bound on tik.
If it traverses the arc after the attack has concluded (i.e., ykπ = 1), Constraint (2l) imposes a lower
bound on tjk.

Constraint (2m) and Constraint (2n) enforces non-negativity and binary restrictions on associated
decision variables.

Helpful to a solution procedure, the lower-level problem is separable by shipment k ∈ K. It may
not be necessary to solve the problem separably for smaller instances, but it would be beneficial to
do so for instances having a large number of shipments. This characteristic provides one motivation
to explore parallel processing to invoke a commercial solver to address multiple instances of a math
program, simultaneously.
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CUSTOMIZED GENETIC ALGORITHM

The other motivation to explore parallel processing arises from the solution method we embrace to
solve this problem. As previously described, we adopt a customized genetic algorithm to search the
upper-level feasible region, seeking high-quality solutions for the attacker. For each such, population
member, we invoke a commercial solver to identify the optimal routing response for the defender.

Algorithm 1 depicts the customized genetic algorithm. From generation to generation, the procedure
iteratively performs crossover, mutation, and immigration operations on members of a population,
thereafter attriting the least fit members to maintain a fixed population of size m. These operations
are applied to pairs of members in the population, identified by their ordinal fitness function ranking.

Algorithm 1 Customized Genetic Algorithm
1: Initialize a population having m members (i.e., feasible attacker solutions)
2: while no termination criterion is met do
3: Pair solutions based on ordinal ranking of fitness function values
4: for all solution pairs (i.e., parents) do
5: With probability pc, apply crossover to generate two child solutions
6: With probability pm, mutate a single parent to generate a new solution
7: With probability pi, generate and immigrate a new solution
8: end for
9: Evaluate the fitness function of any newly created solutions
10: Apply attrition to maintain population of size m

In preliminary testing using a population of m = 10 members on a realistic-sized instance, each
fitness function evaluation required 5-10 minutes of computational effort with a leading commercial
solver (i.e., Gurobi v9.5.1). Of importance, the crossover, mutation, and immigration operations
are not sequence dependent, either within a category of operations or between them. In the rare
occurrence that every possible operation applies to a single generation having m population mem-
bers, there will be 1.5m new members to assess, prior to attrition. However, high values of pc, pm,
and pi are still unwieldy, in terms of imposing computational demands on the solution procedure.

EVALUATING PARALLELISM FOR MATH PROGRAMMING INSTANCES

As discussed, there are two potential benefits to parallel invocation of a commercial optimization
solver. First, because this research is interested in routing a larger number of shipments (approxi-
mately 75-100), evaluating methods to implement parallelism is worth exploration since computation
times to solve the lower-level problem might be reduced by a factor of the number of processors
available if the routing of each shipment is solved in parallel. Second, Algorithm 1’s serial evaluation
of population member fitness functions could be implemented in parallel to save time.

With respect to implementation, this research implemented Algorithm 1 in Python while using
the GurobiPy package to invoke Gurobi when solving instances of the lower-level problem (Gurobi
Optimization, 2020). Both Python and Gurobi have built-in parallel processing packages that may
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potentially be integrated into the lower-level routing solution routine or among the operations of
crossover, mutation, and immigration in Lines 4-8 in Algorithm 1. Table 1 shows specific op-
portunities within Algorithm 1 wherein parallelism might be implemented. Testing evaluated the
parallelism approaches for efficacy; the following sections discuss our findings.

Table 1: Parallelism Opportunities within Algorithm 1
Methods Investigated

Opportunity When Gurobi Python
Evaluate a fitness function by routing K Line 1 Multiple scenarios multiprocessing
shipments via separable math programs Line 9 n/a joblib, parfor
Perform GA operations on pairs of solutions Lines 4-8 n/a parfor

Parallelism Technique #1 - Multiple Scenarios in Gurobi

The multiple scenario approach arises from a Gurobi-specific Python package. GurobiPy integrates
the Gurobi solver’s capability to define multiple scenarios from a baseline model. Scenarios are
generated from the baseline model by modifying (linear) objective function coefficients, variable
lower/upper bounds, and constraint right hand side values (Gurobi Optimization, 2023). Once
scenarios are defined, Gurobi solves them in parallel to return a set of solutions. In practical terms,
this procedure is akin to Sample Average Approximation for a stochastic math program having
some degree of parametric uncertainty.

With respect to Algorithm 1, when evaluating a member of a GA population by identifying the
optimal routing of each shipment via a separate math program, there exists minor differences be-
tween the instances. From this perspective, there exists parametric variation among the K different
lower-level problems that is arguably well suited for the multiple scenario approach.

Ideally, Gurobi would assign each scenario (i.e., solving for the routing solution of a single shipment)
to a single available thread or core and return the optimal routing solution before moving to the
next scenario in the queue until all shipments were optimally routed.

However, efforts to implement the multiple scenario approach revealed that the perceived parametric
variations were too great. In practice, the resulting modifications to origins, destinations, and
delivery windows across the different shipments departed from the types of variations GurobiPy
can use for this solution technique. In testing, the solver reverted to solving the K separable lower-
level problems in serial rather than parallel. As such, the multiple scenario feature is better suited
for use when solving stochastic programs, e.g., via sample average approximation.

Parallelism Technique #2 - Multiprocessing in Python

The multiprocessing package in Python enables process-based parallelism to create individual en-
vironments for each process and to pool processes for execution by the computational resources
available on a computer. The Python multi-processing module is an attractive alternative because
it allows a developer to leverage multiple processors on a given machine (Heimes, 2023).

We made small adjustments to the coding structure of Algorithm 1 to test multiprocessing capability
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within the bilevel modeling framework. When evaluating the fitness function of an upper-level
solution, multiprocessing created K routing optimization problems for each lower-level shipment.
That is, it simultaneously created K Gurobi models in their own environments.

Testing of this technique attained mixed results. Procedurally, it was successful. The multiprocess-
ing Python package was capable of generating individual environments for processes and solving
the shipments in parallel using available computing resources available. Computationally, it did not
reduce the required time. The creation and disposal of environments added unanticipated computa-
tional expense that was non-trivial, compared to the time to optimally route single shipments. The
result was an increase in the required computational effort to solve a lower-level problem instance.

Parallel computing using multiprocessing requires an acknowledgement of certain tradeoffs. Multi-
processing with Python requires overhead routines to distribute jobs from the pool to the processors.
The expense of these routines was further encumbered by the need to repeatedly pass a large amount
of instance-specific data (e.g., network topology data, temporal parameter data) to and from en-
vironments. Based on complementary testing of the multiprocessing function to ensure it worked,
We identified both of these factors as obstacles to improve the computational efficiency for routing
K shipments for our problem.

There are two possible measures to address this shortcoming. First, one could work to reduce
the time required by overhead routines to allocate jobs to the processors. Second, one could seek
to reduce the data requirements of an instance within each environment. Frankly, neither such
approach is realistic for our problem. More realistic is to identify the types of optimization problems
for which multiprocessing would be beneficial. Such problems should be difficult to solve but small,
in terms of their parametric data. That is, NP-hard combinatorial optimization problems should
be well suited for this approach.

Parallelism Technique #3 - Joblib in Python

Next, testing evaluated the joblib Python library for its ability to enable parallelism. The joblib
object uses “workers” to compute the application of a function to many different arguments in
parallel (Varoquaux, 2023). Joblib contains ‘Dump’ and ‘Load’ operations to improve efficiency
when processing of large datasets, specifically large numpy arrays.

With respect to Algorithm 1, we used joblib to route each of the K shipments when identifying an
optimal routing solution for a new member of the population created via crossover, mutation, or im-
migration. Doing so entailed slight modifications to the coding of Algorithm 1 to add structure and
management of the environments necessary to use the joblib package. We successfully implemented
parallelism via the joblib package. However, its lack of thread management and inability to effi-
ciently create, assign, and dispose of individual environments responsible for solving and returning
the solution for each math program in parallel, exposed limitations of the joblib implementation.

Routing the shipments in parallel was much slower than solving the shipments in sequence. As
with multiprocessing, the overhead tasks that assign jobs to workers are the primary suspect, re-
quiring additional computational effort while not adequately managing the threads. To be succinct,
overloaded threads do not leave adequate random access memory for both the centralized, over-
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head tasks and the operating system to operate efficiently. The results are memory congestion and
reducing processing speed, which in turn slow down the completion of tasks. Similar to the multi-
processing approach previously discussed, the joblib library could be improved by a combination of
reducing overhead operations and implementing thread management, reserving a buffer of space for
operations requiring a surge in memory. As with the multiprocessing technique, we also suspect the
data-encumbered nature of these instances were also relatively challenging to the joblib package; it
may be better suited for smaller yet computationally challenging optimization problems.

Parallelism Technique #4 - Parfor in Python

The final excursion integrated the parfor function, originally developed in Matlab and recently
adapted for Python. Parfor decorates (i.e., prepends) an iterable function and returns the result of
that function evaluated in parallel for each iteration over a specified range of values (Pomp, 2023).

We leveraged parfor in two different ways. First, we used it to route K shipments for a given
upper-level solution (i.e., to evaluate a fitness function). Second, we used it to implement the loop
represented by Lines 4-7 for each pair of ordinally ranked fitness functions.

When implementing parfor for the first use, it was able to leverage Gurobi to solve the shipments
in parallel via function-based calls and utilize available computing resources. However, we again
attained a computationally deficient result, relative to a serial implementation. The parfor function
implementation was also not thread safe when leveraging Gurobi. Compared to simple command
calls, a parallel creation and solving of individual Gurobi model instances is non-trivial.

When implementing parfor for the second use, we attained qualified success. Algorithm 1 examined
each pair of solutions in parallel, conducting the respective GA operations. This implementation
yielded marginal improvement in computation time, examining each ordinally-ranked pair of solu-
tions in parallel and, for each one, conducting the specific GA operations in serial using Python
dictionaries. The result was a more efficient generation of new solutions. Admittedly, this im-
provement affected an aspect of Algorithm 1 that did not use the commercial solver Gurobi, so the
potential benefit was not as great as the other attempts to leverage parallelism.

CONCLUSIONS AND RECOMMENDATIONS

This research examined the use of parallel processing to speed up a metaheuristic designed to solve
a bilevel programming problem. Although we used a genetic algorithm, similar metaheuristics are
increasingly used by researchers to address bilevel programs, searching the upper-level feasible re-
gion and, for each solution, evaluating the solution by finding the lower-level decision maker’s best
response, i.e., solving an optimization problem. For a GA metaheuristic, the existence of a pop-
ulation of upper-level solutions that requires the solution to multiple lower-level problems within
an iteration of the metaheuristic provides an opportunity to leverage parallel computing. More-
over, when a lower-level problem is separable as in our motivating problem, there is an additional
opportunity to leverage parallelism by solving the separable programs simultaneously.

We identified and tested four techniques to leverage such parallelism, focusing primarily on using it
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to solve the separable math programs when routingK shipments when evaluating a single upper-level
feasible solution. For the scope of this study, we did not seek to parallelize the evaluation of multiple
fitness functions simultaneously until we could successfully implement the former application.

Among the techniques examined were one specific to the GurobiPy package and three specific to the
Python programming language. When invoking the Gurobi commercial solver, we tested the mul-
tiple scenarios feature within the GurobiPy package. Alternatively, we examined multiprocessing,
the joblib library, and the parfor function to accomplish the same task at different points within
the GA. Testing additionally leveraged parfor for parallel GA operations to create new population
members. Each excursion demanded small alterations to the modeling framework coding structure
to test integration of parallel computing.

Although these techniques did not result in parallelism for optimization being integrated within
our modeling framework, they do offer insight regarding what steps may be necessary to achieve
this capability. Since Gurobi is not thread safe, there are unique challenges that must be overcome
when attempting to parallelize a complex process within Python that iteratively updates model con-
straints and executes the solver. Additionally, the handling of memory and environment allocation
consistently was an obstacle to success for each technique..

Testing of the GurobiPy package with multiple scenarios attempted parallelism from within the
commercial solver construct and revealed limitations related to thread control and memory man-
agement. These limitations may be lessened via improved memory management such as the use
of a built-in sub-process manager to practically distribute memory threads to enable more efficient
computing through parallelism. This result motivates further exploration of the GurobiPy pack-
age and potential correspondence with Gurobi developers regarding current and future capability.
Other future work on parallelism may consider using different solvers and computing packages that
offer more environmental and memory control.

Testing the multiprocessing, joblib, and parfor Python libraries also did not improve computational
efficiency when routing multiple shipments in parallel. Among the techniques examined, multipro-
cessing exhibited the greatest control of the environments and assignment of jobs to processors;
however, the lack of overhead task management and large amount of parametric data for the under-
lying problem induced limitations regarding parallelism. Testing revealed the joblib package handled
the large data footprint more efficiently but had very little control over both the environment and
overhead tasks, ultimately failing to improve the efficiency of solving the lower-level problem. The
parfor library was the least capable of the developmental approaches, lacking environmental con-
trol and an efficient manner to handle the large data footprint associated with parameterizing the
lower-level routing problem.

The recommendations resulting from our study can improve the use of parallelism to solve multiple
optimization problems. In a separate research thread, Sauk et al. (2020) recently examined GPU-
based optimization algorithms to solve linear programs in parallel. We contend that the future of
optimization will entail both types of parallelism – across and within optimization problems – and
will allow for better use of high performance computing (HPC) machines that leverage a distributed
computing cluster and resource manager, e.g., the Oracle Grid Engine (ORE) or Terascale Open-
source Resource and QUEue Manager (TORQUE).
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