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ABSTRACT 

 

This paper introduces a special problem with two decision makers and real numbers as decision 

variables. The uniqueness of response functions are guaranteed by the assumption that each profit 

function is strictly concave in its own decision variable. The existence can be guaranteed by several 

alternative conditions. Special dynamic extensions are analyzed when the decision makers are not in 

equilibrium states but try to reach equilibrium with a dynamic process. Three such models are 

considered: under discrete time scales, under continuous time scales without and with delayed 

information.  
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INTRODUCTION 

 

Consider a decision problem in which two decision makers (DM) are involved and the profit of each 

DM depends on the actions of both of them. Such situations are called as two-person games. The 

fundamentals of game theory can be found in many textbooks and monographs. See for example, 

Matsumoto and Szidarovszky (2016). For the sake of simplicity assume that their actions are 

characterized by real numbers x1 and x2. Assume that the profit functions φ1(x1 , x2) and φ2(x1 , x2) 

are continuously differentiable on R+
2  , φ1 is strictly concave in x1 with any fixed value of x2, and 

similarly, φ2 is strictly concave in x2 with any fixed value of x1. Therefore, with any value of x2, and 

DM1 has a unique maximizer of φ1, R1(x2), and with any value of x1, DM2 has a unique maximizer of 

φ2, R2(x1). These functions are usually called the response functions. The equilibrium of this situation 

is a pair (x1̅,  x2̅̅ ̅̅ ) of decisions of DMs such that: x1̅= R1(x2̅̅̅) and x2̅̅̅= R2(x1̅), meaning that the 

equilibrium decisions are optimal for both DMs assuming that the other DM selects equilibrium 

decision. Assume that at any time t > 0 their decisions are not on equilibrium levels, then they try to use 

a dynamic process which could lead to equilibrium for both DMs. 

 

DISCRETE ANALYSIS 

 

In the case of discrete time scales the DMs make changes at time periods t = 0, 1, 2, … such that at each 

time period they try to approach their best responses:     

     

x1(t + 1) = x1(t) + α(R1(x2(t)) − x1(t)) (1) 

x2(t + 1) = x2(t) + β(R2(x1(t)) − x2(t))  (2) 
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where α, β are positive coefficients. In order to avoid overshooting both are assumed to be less than 

unity. The convergence of these sequences (or stability) is usually examined by linearization around the 

equilibrium: 

 

x1̃(t + 1) = (1 − α)x1̃(t) + αR1
′ ( x2̅̅ ̅̅ )x2̃(t) (3) 

x2̃(t + 1) = βR2
′ ( x1̅̅̅̅ )x1̃(t) + (1 − β)x2̃(t),  (4) 

 

where x1̃(t) and x2̃(t) denote their differences from the equilibrium values: x1̃(t) = x1(t) − x1̅  and 

x2̃(t) = x2(t) − x2̅̅̅. So, sequences {x1(t)} and {x2(t)} converge to their equilibrium levels if and only if 
{x1̃(t)} and {x2̃(t)}  converge to zero. 

 

In order to see if these sequences converge to zero, we need to find the eigenvalues of the system by 

assuming exponential solutions  x1̃(t) = λtu  and x2̃(t) = λtv. Substitution of these solutions into 

equations (3) and (4) gives: 

 

λt+1u  = (1 − α)λtu + αR1
′ ( x2̅̅ ̅̅ )λtv (5) 

λt+1v = βR2
′ ( x1̅̅̅̅ )λtu + (1 − β)λtv  (6) 

 

After simplifying with λt, a homogeneous linear algebraic system is obtained for u and v, which has 

nonzero solutions if and only if its determinant is zero: 

 

0 = det (
1 − α − λ αR1

′ ( x2̅̅ ̅̅ )

βR2
′ ( x1̅̅̅̅ ) 1 − β − λ

) =  λ2 − λ(2 − α − β) + (1 − α)(1 − β) − αβR1
′ ( x2̅̅ ̅̅ )R2

′ ( x1̅̅̅̅ ). (7) 

 

It is a quadradic polynomial λ2 + pλ + q with p = −(2 − α − β) and q = 1 − α − β + αβ(1 −
R1

′ ( x1̅̅̅̅ ) R2
′ ( x1̅̅̅̅ ) ). Sequences {x1(t)} and {x2(t)} converge to the equilibrium levels if and only if for all 

eigenvalues , |λ| < 1, which is the case if and only if (see Bischi et al., 2010) 

 

1 + p + q > 0 

1 − p + q > 0 

q < 1 

(8) 

 

In our case the convergence conditions are as follows: 

 

R1
′ ( x2̅̅ ̅̅ )R2

′ ( x1̅̅̅̅ ) < 1 

R1
′ ( x2̅̅ ̅̅ )R2

′ ( x1̅̅̅̅ ) < 1 +
4 − 2α − 2β

αβ
 

(9) 

 

and 

 

R1
′ ( x2̅̅ ̅̅ )R2

′ ( x1̅̅̅̅ ) > 1 −
α + β

αβ
 (10) 

 

Since both α and β are less than unity, the second term in the right-hand side of the second inequality is 

positive implying that the first inequality is stronger than the second one. Therefore, the sufficient and 

necessary condition for convergence is the following: 
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1 −
α + β

αβ
< R1

′ ( x2̅̅ ̅̅ )R2
′ ( x1̅̅̅̅ )   < 1 (11) 

 

CONTINUOUS ANALYSIS 

 

If the time scale is the entire interval [0, ∞), then with any t ≥ 0 there is no “next time period”, so the 

directions of changes in decisions are modeled. Similarly, to the discrete case both DMs try to move into 

the direction toward their best responses: 

 

x1̇(t) = α(R1(x2(t)) − x1(t)) (12) 

x2̇(t) = β(R2(x1(t)) − x2(t)) (13) 

 

Linearization of the right-hand side around the equilibrium leads to the equations: 

 

x1̇̃(t) = −αx1̃(t) + αR1
′ ( x2̅̅ ̅̅ )x2̃(t) (14) 

x2̇̃(t) = βR2
′ ( x1̅̅̅̅ )x1̃(t) − βx2̃(t) (15) 

 

Similarly, to the discrete case we assume again exponential solutions x1̃(t) = eλtu  and x2̃(t) = eλtv  

leading to the following: 

 

λeλtu    = −αeλtu + αR1
′ ( x2̅̅ ̅̅ )eλtv (16) 

λeλtv   = βR2
′ ( x1̅̅̅̅ )eλtu − βeλtv.  (17) 

 

After simplifying with eλt, a homogenous linear algebraic system is obtained, which has nonzero 

solutions if and only if its determinant is zero: 

 

O = det (
−α − λ αR1

′ ( x2̅̅ ̅̅ )

βR2
′ ( x1̅̅̅̅ ) −β − λ

) =  λ2 + λ(α + β) + αβ(1 −  R1
′ ( x2̅̅ ̅̅ )R2

′ ( x1̅̅̅̅ )). (18) 

 

It is again a quadratic polynomial λ2 + pλ + q with p = α + β  and q = αβ(1 −  R1
′ ( x2̅̅ ̅̅ )R2

′ ( x1̅̅̅̅ )). As 

t → ∞ , functions x1(t) and x2(t)  converge to their equilibrium levels if and only if the real parts of all 

eigenvalues are negative, which is the case if and only if both p and q are positive (see Bischi at al., 

2010). Therefore, the sufficient and necessary condition for convergence is the following: 

 

R1
′ ( x2̅̅ ̅̅ )R2

′ ( x1̅̅̅̅ )   < 1. (19) 

 

Comparing conditions (11) and (19) it is clear that convergence in the discrete case implies the same for 

continuous case, however, convergence in the continuous case does not necessarily imply the same for 

the discrete case. 

 

ANALYSIS WITH DELAYED INFORMATION 

 

Assume now that the DMs may have access to only delayed information about the decisions of the 

others. In the discrete case the delay is integer, resulting in a higher order difference equation system. 

The continuous case is more interesting. Let τ1and  τ2 denote the length of delays, then system (12), 

(13) is modified as: 
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x1̇(t) = α(R1(x2(t − τ2)) − x1(t)) (20) 

x2̇(t) = β(R2(x1(t − τ1)) − x2(t)) (21) 

 

with linearized version, 

 

x1̇̃(t) = αR1
′ ( x2̅̅ ̅̅ )x2̃(t − τ2) − αx1̃(t) (22) 

x2̇̃(t) = βR2
′ ( x1̅̅̅̅ )x1̃(t − τ1 ) − βx2̃(t). (23) 

 

The eigenvalues of this system depend on the lengths of the delays. We now proceed similarly to the 

previous, no-delay case. 

 

Exponential solutions are again assumed; x1̃(t) = eλtu  and x2̃(t) = eλtv ; which are substituted into the 

equations to get the following: 

 

λeλtu    = −αeλtu + αR1
′ ( x2̅̅ ̅̅ )eλ(t−τ2)v  (24) 

λeλtv   = βR2
′ ( x1̅̅̅̅ )eλ(t− τ1)u − βeλtv (25) 

 

After simplifying with eλt, the determinant of the system becomes: 

 

O = det (
−α − λ αR1

′ ( x2̅̅ ̅̅ )e−λτ2 

βR2
′ ( x1̅̅̅̅ )e−λτ1 −β − λ

)

=  λ2 + λ(α + β) + αβ(1 − R1
′ ( x2̅̅ ̅̅ )R2

′ ( x1̅̅̅̅ )e−λ(τ1+τ2)). 

(26) 

 

Notice first that without delays τ1 = τ2=0, this equation reduces to (18). It is also interesting to mention 

that the eigenvalues do not depend on the individual delays, only on their sum. 

 

Assume that without delays x1(t) and x2(t) converge to the equilibrium levels, that is (19) holds. If the 

sum τ =τ1 + τ2 increases, then this convergence property might not hold anymore. The smallest value 

τ0 of the sum, when the convergence property is lost is called the critical value. It is also well-known 

(Matsumoto and Szidarovszky, 2018) that at τ=τ0, at least one eigenvalue has zero real part, λ = iw. 

Since complex conjugate of an eigenvalue is also an eigenvalue, we may assume that w > 0. 

Substituting this special eigenvalue into equation (26) we have: 

 

−w2 + iw(α + β) + αβ(1 − R1
′ ( x2̅̅ ̅̅ )R2

′ ( x1̅̅̅̅ ))(cos wτ − isin wτ)) = 0 (27) 

 

Separating the real and imagining parts 

 

αβR1
′ ( x2̅̅ ̅̅ )R2

′ ( x1̅̅̅̅ ) cos wτ =-w2 + αβ    (28) 

αβR1
′ ( x2̅̅ ̅̅ )R2

′ ( x1̅̅̅̅ ) sin wτ =-w(α + β) (29) 

  

Adding up the squares of these equations: 

 

α2β2(R1
′ ( x2̅̅ ̅̅ )R2

′ ( x1̅̅̅̅ ))2 = w4 − 2w2αβ + α2β2 + w2(α2+β2 + 2αβ) 

 
(30) 

or   
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w4 + w2(α2 + β2) + α2β2(1 − (R1
′ ( x2̅̅ ̅̅ )R2

′ ( x1̅̅̅̅ ))2) = 0 

 
(31) 

In case, when (19) holds, the constant term is positive showing that there is no positive solution for w2. 

Therefore, the convergence property holds for all positive delays, since there is no stability switch. 

 

Assume next that (19) is violated with strict inequality, that is, R1
′ ( x2̅̅ ̅̅ )R2

′ ( x1̅̅̅̅ ) > 1. In this case equation 

(31) has two real roots for w2: 

 

w±
2 =

−(α2+β2) ± √D

2
 

 

(32) 

with  

 

D = (α2+β2)2 − 4α2β2(1 − (R1
′ ( x2̅̅ ̅̅ )R2

′ ( x1̅̅̅̅ ))2) > (α2+β2)2 (33) 

 

implying that w+
2 > 0 and w−

2 < 0. Therefore, we have a unique positive value, w = w+ . For the sake 

of simplicity assume that both response functions are strictly increasing or decreasing, that is,  

 

R1
′ ( x2̅̅ ̅̅ )R2

′ ( x1̅̅̅̅ ) > 0 

 
(34) 

The other case can be discussed similarly.  

 

From equation (29) it is clear that sin wτ < 0. The sign of cos wτ depends on the value of w2: 
 

cos wτ = {

> 0    if w2 <  αβ

= 0     if  w2 =  αβ

< 0    if  w2 >  αβ

 (35) 

 

so  

 

τ0̃ = {
(1 w)(2π − cos−1(A))      if  w2 ≠  αβ⁄

3π 2w                                   if ⁄ w2 =  αβ

 

 

(36) 

where  

 

A =
−w2 + αβ

αβR1
′ ( x2̅̅ ̅̅ )R2

′ ( x1̅̅̅̅ )
 . 

 

(37) 

The directions of the stability switches are determined by Hopt bifurcation. Select τ  as the bifurcation 

parameter and consider the eigenvalues as functions of τ: λ = λ(τ). Implicitly differentiating equation 

(26) with respect to τ we have: 

 

O = 2λλ′  + (α + β)λ′  − αβR1
′ ( x2̅̅ ̅̅ )R2

′ ( x1̅̅̅̅ )e−λτ (−λ′ τ − λ)
= 2λλ′  + (α + β)λ′  − (λ2 + λ(α + β) + αβ)(−λ′ τ − λ) 

(38) 
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where we used equation (26) again. So, 

 

λ′ (2λ +  α + β + τ(λ2 + λ(α + β) + αβ)) + λ(λ2 + λ(α + β) + αβ) = 0 (39) 

  

implying that 

 
1

λ′ 
= −

2λ + α + β

λ(λ2 + λ(α + β) + αβ)
−

τ

λ
 . (40) 

 

The real parts of λ′ and  
1

λ′ 
 have same sign and at λ = iw, 

τ

λ
 is pure complex number with zero real part, 

so we need to see the sign of the real part of: 

 
−2iw − α − β

iw(−w2 + iw(α + β) + αβ)
= −

−2iw − α − β

iw(αβ − w2) − w2(α + β)

=
(−2iw − α − β)(−w2(α + β) − iw(αβ − w2))

w2(αβ − w2)2 + w4(α + β)2
. 

(41) 

 

The denominator is positive and the real part of the numerator is  

 

−2w2(αβ − w2) + w2(α + β)(α + β) = w2(α2 + β2 + 2w2) > 0 (42) 

 

showing that at the critical values at least one eigenvalue changes the sign of its real part from negative 

to positive. That is, convergence cannot return with delayed information. 

 

NUMERICAL SOLUTION  

 

The stable and unstable cases are illustrated. The parameter selection is the following in both cases: 

 

b1 = b2 = 1 , α = β = 1 

 
(43) 

with response functions: R1(x2) = −a1x2 + b1 and R2(x1) = −a2x1 + b2. 

 

In the stable case we have a1 = a2 = 0.9, in which case  R1
′ (x2) =  R2

′ (x1) = −0.9, so condition (13) is 

satisfied. The (x1, x2) phase diagram is shown in FIGURE 1, where the black curve allows the τ1 =
τ2 = 0 case, the blue curve shows the case of  τ1 = τ2 = 2 and the red curve corresponds to τ1 = τ2 =
3. The green point is the initial point, and the black point is the equilibrium. 

 

The case of τ1 = τ2 = 0 shows a smooth trajectory, while both delay cases represent oscillatory 

trajectories.  
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FIGURE 1. Phase diagram in the stable case 

 

 

FIGURE 2 illustrates the trajectory of x1(t) with the same color code as before. The convergence in all 

cases is clearly demonstrated. 

 

FIGURE 2. Trajectories in the stable case 

 

For the unstable case we selected a1 = a2 = 1.01, where condition (13) is violated. The time trajectory 

of x1(t) is shown in FIGURE 3 with solid lines, the case of τ1 = τ2 = 0 is given in black, the case of 

τ1 = τ2 = 3 is given in blue and the case of τ1 = τ2 = 6 is given in red color. The trajectory of x2(t) is 

illustrated with dotted lines with the same color code as for x1(t). The divergence of trajectories is clear 

in all cases.  
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FIGURE 3. Trajectories in the unstable case 

 

CONCLUSIONS 

 

A special problem was analyzed with two decision makers and real numbers as decision variables. The 

uniqueness of response functions are guaranteed by the assumption that each profit function is strictly 

concave in its own decision variable. The existence can be guaranteed by several alternative conditions, 

for example, by the assumption that for all x2, 
∂φ1

∂x1
(x1, x2) has at least one negative value. The 

assumption for φ2 is similar. Special dynamic extensions were analyzed when the decision makers are 

not in equilibrium states but try to reach equilibrium with a dynamic process. Three such models were 

considered: under discrete time scales, under continuous time scales without and with delayed 

information. The main results of the paper are as follows:  

 

1. Convergence in the discrete case implies the same in the continuous case. 

2. Convergence of the continuous case implies convergence with any positive delays. 

3. If there is no convergence in the no-delay case, then it will remain the case with any positive delays. 
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