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ABSTRACT 

Accurate bra sizing is crucial for effectiveness. This study presents a Geometric Median Decomposition 

(GMD) computational algorithm designed to minimize fitting errors, which is essential given the 

limitations of large-scale customization. Incorrect sizing can lead to discomfort and inadequate 

support.Custom-fitted bras notably outperform mass-produced ones. GMD’s iterative refinement of the 

geometric median offers a potent solution for diverse body shapes, bridging the gap between size and fit. 

This method marks a significant stride in enhancing bra sizing techniques. 

Keywords: Modeling, Simulation, Optimization, Fit Loss Model, Advanced Design and Manufacturing, 

Bra Fit. 

INTRODUCTION 

The efficacy of a bra design hinges on the precision of its sizing. Even a well-engineered bra will only 

provide satisfactory support if its dimensions are accurate. This paper delves into the central concern of 

bra sizing, presenting a method to minimize overall fit loss. This solution is vital due to the inherent 

limitations of large-scale customization. While full customization allows for tailored products or 

services, offering personalized sizing options (Da Silveira, et al., 2001), the constraints of current 3D 

manufacturing and the imprecision in measurement and imaging techniques necessitate additional 

refinement through mathematical modeling. 

Inaccurate sizing gives rise to a myriad of challenges, resulting in insufficient breast support, 

discomfort, and tissue protrusion. Achieving an appropriate bra fit is critical for women, particularly 

those who have undergone breast surgery, as it significantly impacts their physical and psychological 

well-being. Unfortunately, existing bra sizing paradigms inadequately capture the intricate nuances of 

breast contours and dimensions, often relying on basic measurements like under-bust and over-bust 

circumferences (Bowles et al., 2012). In addition, the lack of standardization in bra sizing and 

mailto:khosrow.moshirvaziri@csulb.edu


2 
 

Western Decision Sciences Institute 52nd Conference, April 2-5, 2024 

 

measurement methods across bra brands has further worsened the ability to find the right fit (McGhee & 

Steele, 2020). 

Empirical research reveals that custom-fitted garments, including bras, offer superior fit and greater 

satisfaction compared to mass-produced alternatives (Lanier, 2020). Despite the potential benefits, 

personalized attire remains limited due to various factors such as time constraints, design intricacies, and 

labor-intensive processes (White & Scurr, 2012). Innovations such as 3D scanning, printing, and 

knitting methods have emerged as a promising solution. These innovative techniques have the potential 

to produce custom-fitted products on a larger scale, making personalized attire more accessible. 

However, as previously noted, there will always be a gap between the actual size and the fit, 

highlighting the need for methods to minimize this loss. 

EXISTING SIZING APPROACH 

The alphabetical bra sizing system, introduced by Warner’s company in 1935, has remained the same 

since its inception. This widely adopted system uses various methods to calculate band and cup sizes 

despite the ongoing scrutiny of measurement accuracy and reliability (Peterson & Suh, 2019). The band 

size is determined by adding five inches to the under-bust measurement in inches (for odd numbers) or 

four inches (for even numbers). The cup size is the difference between the over-bust measurement and 

the estimated band size. In contrast, the “metric system” directly derives the band size from the under-

bust measurement. This system is primarily used in Europe and Asia and occasionally in the US. The 

cup size is calculated by subtracting the under-bust measurement from the over-bust measurement. In 

Australia and New Zealand, bra sizes are measured in centimeters, with the band size corresponding to 

one’s “dress size,” increasing in steps of two (e.g., 10, 12, and 14). However, the dress size does not 

align with the bra band size, leading to potential confusion. Each band size reflects a measured 

difference of 5 cm, and cup sizes are denoted by letters (e.g., C, D, DD, and E), representing a difference 

of 2 cm. For example, a size ten band corresponds to an under-bust measurement of 68-72 cm, while a 

size 12 corresponds to 73-77 cm. A 10A cup size corresponds to an over-the-bust measurement of 82-84 

cm, while a 10B cup size is 84-86 cm. 

Sizing inequities 

The limited and standardized range of bra sizes has led to inconsistent sizing standards and ill-fitting 

bras, failing to accommodate the unique body shapes of individuals. This issue is even more pronounced 

for post-surgery bras, which may require additional fitting and sizing needs compared to mainstream 

bras. In a recent survey (Amoozegar-Montero, et al., 2022), the majority of participants (92%) reported 

breast discomfort due to incorrect bra size and fit, including improper band measurement and ill-fitting 

cups (too tight or loose). Additional issues include the bra moving around or not sitting correctly on the 

body and bra straps, causing discomfort. Post-surgery discomforts, such as skin sensitivity, irritation 

from underwire, and scar aggravation, exacerbate the problem. Difficulty fastening the bra, temperature 

and humidity-related discomfort, and post-surgical side effects like fat necrosis, swelling, and chest wall 

pain further contribute to discomfort. Furthermore, poorly fitting bras cause physical discomfort and 

affect the wearer’s internal and external perceptions. Individuals expect support, comfort, proper fit, and 

a bra that stays in place (for more insights into the sociological aspects of bras and bra wearers, refer to 

Amoozegar-Montero, 2022). 
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However, despite various attempts by researchers and manufacturers, achieving the perfect bra fit for 

each individual remains a complex challenge due to women’s bodies’ unique and ever-changing nature. 

Several studies (Amoozegar-Montero, 2024; Wang & Suh, 2019; Gorea et al., 2020) have explored 

innovative design and process options, such as 3D scanning, 3D printing and 3D knitting systems for 

improved bra solutions. Nevertheless, until accurate individual scanning is feasible (with each change in 

body shape and structure) and a personalized manufacturing process becomes available for every bra 

need, we must work within the confines of a discrete sizing process. This approach offers more options 

and accurate sizing translation, though it still falls short. To advance bra design and development, we 

propose a mathematical solution based on the concept of aggregate fit loss and a methodology for its 

optimization. 

AGGREGATE-FIT-LOSS 

A loss function, also known as a cost function or error function, is a mathematical function that takes the 

values of one or more variables or events and maps them to an actual number, intuitively indicating a 

measure of the loss related to a given event or values (see Hastie, et al., 2001). A fit-loss function 

evaluates how well a garment conforms to the size of an individual within a specific sizing system, 

measuring the degree of fit suitability (see McCulloch, et al., 1998). “Aggregate Fit Loss” (AFL) 

denotes the cumulative gauge of the fitting error or inconsistency between a dataset of data points and a 

model or benchmark point (see also Pei, et al., 2020). It encompasses a collective evaluation of 

individual data points, quantifying the overall precision or quality of the model’s adherence to the data. 

Consider a set of n data points (e.g., a 3D scan of an individual), denoted as {𝑥1,, 𝑥2, … , 𝑥𝑚} and let y be 

the reference point or model (e.g., a baseline sizing). 

The aggregated fit loss is typically computed as the sum of individual fit losses between each data point 

and the model. 

                                                                  𝐴𝐹𝐿 = ∑||𝑥𝑖 − 𝑦||
2                                                                                                            

(1)

𝑖

 

Where, ||𝑥𝑖 − 𝑦||2 is called norm2, and in details, it is calculated by the following expression,  

||𝑥𝑖 − 𝑦||2 = √∑ (𝑥𝑗

(𝑖)
− 𝑦𝑗)2𝑚

𝑗=1 ,     

In this notation, 𝑥𝑗
(𝑖)

 denotes the j-th component of vector 𝑥𝑖 for , 𝑗 = 1, … , 𝑚.      

A smaller aggregated fit loss value indicates a better overall fit of the model to the data, meaning that the 

model is closer to the majority of data points. Conversely, a higher aggregated fit loss suggests a poorer 

fit, indicating that the model deviates more from the data points. 

The concept of aggregated fit loss is often used in optimization problems, where the goal is to find the 

model or reference point that minimizes the aggregated fit loss, ensuring the best fit to the data. For 

example, in the context of bra fitting, minimizing the aggregated fit loss helps to find the geometric 

median that best fits the 3D body scans and improves comfort and support in bras for individuals with 

diverse body shapes and sizes. 
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Geometric Median 

The geometric median, also known as the Fermat-Weber point or 1-median, is a point that minimizes the 

sum of Euclidean distances to a set of points in Euclidean space. In essence, envision a multitude of 

points scattered across a map, where the objective is to pinpoint a specific location that optimizes the 

cumulative distance from that location to all other points (see Figure 1). This location is termed the 

geometric median. In the realm of bra fitting, the geometric median assumes the role of identifying the 

optimal fit for an array of bras, accommodating distinct individuals. 

In a more concrete sense, consider a set of bras, each assessed by numerous individuals encompassing 

diverse body shapes and sizes. The geometric median is akin to discovering the most suitable fit for the 

bra size and shape that minimizes overall dissatisfaction across the gamut of individuals who have tried 

on the bras. 

 

Figure 1: Example of Geometric Median. The blue dot represents GMD, and the red circles are the scanned data 

Consequently, the identification of the geometric median is indispensable. By discerning the central fit 

that satisfies a majority of individuals, it becomes plausible to fashion bras that are inclined to offer 

enhanced comfort and support across a diverse user base. Mathematically akin to the previously 

mentioned fit-loss function, the minimization of fit-loss materializes as Geometric Median 

Decomposition (GMD). 

Mathematically, for a given asset of m points, {𝑥1,, 𝑥2, … , 𝑥𝑚},  where 𝑥𝑖 ∈ 𝑅𝑛, then the geometric 

median is defined as  

                                                          arg 𝑚𝑖𝑛
𝑦∈𝑅𝑛

∑ ||
𝑚

𝑗=1
𝑥𝑗 − 𝑦||                                                                     (2) 

Despite its intuitive essence, the geometric median presents a considerable computational challenge, 

particularly within the domain of bra fitting. While the centroid, effectively minimizing the summation 

of squared distances to each point, can be readily computed using a straightforward formula involving 

average point coordinates, the geometric median lacks a comparably direct solution. Nevertheless, 

several methods exist, including Weiszfeld’s algorithm and Geometric Median Decomposition (GMD).  

The Weiszfeld method is an iterative re-weighted least square and has the following form: 
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                                                        𝑍𝐾+1 =
∑ (

𝑥𝑘

||𝑥𝑘 − 𝑍𝐾||
)𝑛

𝑘=1

∑ (
1

||𝑥𝑘 − 𝑍𝐾||
)𝑛

𝑘=1

                                                                  (3)     

Geometric Median Decomposition (GMD) 

Despite its intuitive essence, the geometric median presents a considerable computational challenge, 

particularly within the domain of bra fitting. While the centroid, effectively minimizing the summation 

of squared distances to each point, can be readily computed using a straightforward formula involving 

average point coordinates, the geometric median lacks a comparably direct solution.  

However, in the context of this research, powerful iterative numerical techniques that converge toward 

an accurate estimate of the geometric median can be employed. These iterative methods iteratively 

refine the estimate, approaching the actual geometric median with each iteration until a satisfactory 

solution is reached. 

The Geometric Median Decomposition (GMD) algorithm (See Jiang, 2005) is used to find the best-

fitting point among a group of scattered points. In this case, we are interested in finding an ideal point in 

the middle of all the given points that may have been derived by scanning dozens of people. 

Formally, the algorithm is as follows: 

Given a set of 𝑛 points, {𝑥1 , 𝑥2 , ⋯ , 𝑥𝑛 }, the geometric median, denoted as GMD, is the point 𝑚 that 

minimizes the function: 

                                     𝐹(𝑚) =  ∑ ∥ 𝑥𝑖 − 𝑚 ∥𝑛
𝑖=1                                                (4) 

Initialize the geometric median estimate GMD_0 as the centroid of the initial scan or randomly select a 

point from the scan as the initial estimate. 

For each iteration k from 1 to K:  

Consider the k-th scan and calculate the distances from each point in the scan to the current 

estimate GMD_(k-1). 

Assign weights to each point in the scan based on their distances to GMD_(k-1). Points closer to 

GMD_(k-1) receive higher weights 

Compute the weighted geometric median for the kth scan, which is the point that minimizes the 

weighted sum of Euclidean distances. 

Set GMD_k as the weighted geometric median obtained above 

Repeat for K iterations or until convergence criteria are met  

The GMD algorithm offers several advantages for aggregating scans and finding the geometric median: 

Iterative Refinement: By dividing the problem into multiple subproblems and refining the estimate 

iteratively, the GMD algorithm converges to a more accurate geometric median, providing a robust and 

reliable solution. 
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Handling Outliers: GMD can effectively handle outliers in the scans. Points far from the initial 

estimate, GMD_0, will have lower weights, reducing their influence on the final estimate. 

Flexibility: The GMD algorithm is adaptable to different scan distributions and dimensionalities, 

making it suitable for a wide range of bra fitting scenarios. 

Improved Fit Loss Minimization: By optimizing the aggregate fit loss across multiple scans, the GMD 

algorithm aims to provide bras that offer better comfort, support, and fit for individuals with diverse 

body shapes and sizes. 

The GMD algorithm is a powerful tool for minimizing aggregate fit loss and improving bra fitting 

outcomes. Its ability to iteratively refine estimates and handle outliers contributes to a more accurate and 

personalized fitting experience, addressing the longstanding challenges of traditional bra fitting 

methods. 

GMD Methodology 

To implement the GMD algorithm for improved bra fitting, a dataset of 3D body scans from individuals 

with diverse body shapes and sizes is needed. This dataset encompasses a range of breast volumes, chest 

circumferences, and torso shapes to ensure that the resulting bra designs cater to the needs of a diverse 

population. 

Before the GMD algorithm application, the acquired 3D scans necessitate preprocessing to ensure 

uniformity and compatibility. This preprocessing step entails aligning scans to a common reference 

frame and normalizing data to eliminate scaling or rotation disparities. Once alignment and 

normalization are achieved, the GMD algorithm is brought to bear to locate the geometric median 

corresponding to the optimum bra fit, reducing aggregate fit loss across all scans. 

The iterative nature of the GMD algorithm allows for fine-tuning the geometric median estimate at each 

step, considering the weights assigned to each point based on its distance from the previous estimate. 

The algorithm continues refining the estimate until it converges the specified number of iterations (K). 

Although we are interested in the Aggregate Fit Loss, other loss metrics can be used to evaluate the 

performance of the GMD-based bra fitting approach. These metrics should capture different aspects of 

bra fit, including comfort, support, and individual fit loss for each scan. 

Common fit loss metrics include: 

Aggregate Fit Loss: The sum of individual fit losses for all scans, quantifying the overall fit 

performance of the GMD-based fitting approach. 

Individual Fit Loss: The fit loss of each scan is calculated as the Euclidean distance between the 

scanned points and the estimated geometric median. 

Comfort and Support Ratings: Participants can provide subjective feedback on the comfort and 

support provided by the bras resulting from the GMD algorithm. This feedback helps assess the 

practicality of the algorithms’ outputs in real-world scenarios. 
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An Illustrative Example 

For the simplicity of the illustration, assume we are interested in developing a single size bra that would 

have the best fit for 100 women of a similar body type. The process includes under and over and other 

measures (e.g., the distance between the breasts, etc.). The underbust measurements range from 72.1cm 

to 76.5cm (e.g., a 34-sized bra). The cup size ranged from 82 to 86. This is equivalent to a 34C in 

commercial bra stores (see Figure 2) 

The bases for a generic bra for under- and overbust are 74 and 90 cm, respectively, providing an 

aggregated fit loss of 172.95. However, using the algorithm above, we can set a new baseline (GMD) of 

74.44 and 89.23, which has an aggregate fit loss of 150, which provides a 13.1% increase in better fit 

across the population that may consider itself a 34C-sized bra wearer.  

 

Figure 2: Range of underbust and overbust size 

Considering the cup volume (base and heights, though not its accurate contour), we can add two sets of 

data and minimize the fit loss model. The result is the following solution for our sample with about 

12.91% improvement. 

Table 1: Results based on cup volume 

 Original Optimized 

Underbust 74.00 74.48 

Overbust 90.00 89.23 

Cup Diameter 11.40 11.38 

Cup Height 5.72 5.72 

 

Given a relatively significant difference between bust and cup size and possible independence between 

the point measurement, we ran four 1-D modes with the following results: 
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Table 2: Results of 1-D mode simulation 

 Original Optimized 

Underbust 74.00 74.37 

Overbust 90.00 89.17 

Cup Diameter 11.40 11.39 

Cup Height 5.72 5.69 

 

This resulted in an aggregate fit loss improvement of 12.7%, which is not as good as the first run of the 

model. Either variation of the options (e.g., using volume or normalizing the data) did not provide a 

better solution. 

Direct Optimization Method. 

To verify our results obtained via the Weiszfeld method, we alternatively consider solving problem (2) 

of minimization of AFL to find the optimal value of fit loss and, in particular, the solution vector y (the 

Geometric Median) by applying optimization via CVX/MATLAB. This package specifies and solves 

convex programs (See Grant and Boyd, 2013). It is important to note that problem (2) is a special form 

of an important class of optimization problems called Second Order Cone Programming (SOCP). This 

later class of programs is known to be in the Convex Optimization domain.  

This fact enables us to code and implement problem (2) in higher dimensional space with confidence in 

the solution. Additionally, the accuracy of our computational results in the MATLAB environment is 

known to be reliable. This is especially true when the output parameters are the results of iterative 

techniques, where minor deviation in the accuracy of a variable in one iteration could propagate quickly 

and enlarge in the later iterations.   

Verification of prior results   

For our test-data discussed in the previous section and tested with the Weiszfeld method, we 

implemented and solved our optimization problem (2) using CVX/MATLAB. 

The results of the 1-D model are consistent with those obtained via the Weiszfeld method and are 

presented below. 

Table 3: Consistency of 1-D model and the Weiszfeld method 

 Original Optimized 

Underbust 74.00 74.477508254528402 

Overbust 90.00 89.230426802972843 

Cup Diameter 11.40 11.390806336118080 

Cup Height 5.72 5.7135703946596530 

 

This resulted in an aggregate fit loss improvement of 12.91%, slightly better but consistent with that 

obtained via the Weiszfeld method. The same trend/pattern applies to the solution of various scenarios 

tested with the earlier method, thus verifying the superiority of using the Geometric Median 

Decomposition (GMD) algorithm to optimize the Aggregate Fit-Loss function (AFL).   
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CONCLUDING REMARKS  

This paper addresses the critical issue of precise bra sizing and fit by proposing a method to minimize 

overall fit loss, which is vital due to limitations in large-scale customization. While existing bra sizing 

paradigms have struggled to capture the diverse contours and dimensions of the human body, the 

proposed mathematical solution in this paper introduces a promising avenue for improvement.  

This paper introduces the concept of Aggregate Fit Loss (AFL) and the Geometric Median 

Decomposition (GMD) algorithm to bridge the gap between actual size and fit. AFL quantifies fitting 

discrepancies between empirical data and predictive models to minimize overall fit loss. GMD algorithm 

identifies a geometric median that optimally fits various body shapes. The iterative GMD process 

effectively refines the estimate, catering to individual differences and handling outliers, thus enhancing 

the overall fitting experience. 

The paper underscores the necessity for innovative bra sizing approaches, demonstrating the GMD 

algorithm’s potential to mitigate fit loss and offer more accurate and personalized fitting experiences. 

The application of these concepts holds promise for addressing longstanding challenges in traditional 

bra sizing methodologies and improving comfort, support, and fit for individuals with diverse body 

shapes and sizes. Through an interdisciplinary lens, this paper presents a concrete methodology for 

translating mathematical insights into tangible improvements in bra design. 
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