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ABSTRACT

This paper proposes a Goal Programming (GP) model for making emergency logistics networks (ELNS)
both responsive and efficient. The model uses the Social Vulnerability Index for responsiveness and the
Total Logistics Cost for efficiency. It also sets facilities’ response capacity limits. Using FEMA's historical
disaster data, we analyze the model’s performance and operation strategy. Using the GP model's best-
performing ELN, we propose a capacity-dependent relief item distribution strategy over multiple periods.
As facilities’ response capacity decreases, ELNs’ responsiveness becomes more sensitive, and
productivity gets more discriminating power among ELNSs, according to the case study results.

Keywords: goal programming, emergency logistics networks, social vulnerability index, total logistics
cost, response capacity

INTRODUCTION

An emergency logistics network (ELN) is a supply network that distributes relief items stored in the relief
facilities to the affected areas to help victims during a disaster. In 2023 alone, the US experienced 28
separate weather and climate disasters (one winter storm, one wildfire, one drought, four flooding events,
two tornado outbreaks, two tropical cyclones, and seventeen severe weather and hail events), each
resulting in at least $1 billion in damages. 2023 results in at least 492 fatalities—the 8" highest number of
disaster-related deaths since 1980. See Figure 1 for each of the disasters. The severity and frequency of
these disasters justify the need for an ELN design model for prompt disaster response and preparedness.

A traditional supply chain design operates under the assumption that facilities are always available, and it
optimizes the supply chain by minimizing total cost (or maximizing profit) to meet market demands
through product distribution channels. An ELN design deviates from the traditional supply chain design
in that it considers the frequent unavailability of certain facilities and the potential damage or
unavailability of stored relief items during a disaster, thereby causing delays in the distribution of relief
items to victims. For example, when Hurricane Beryl hit Houston in 2024, the majority of areas of the city
lost electricity. The local electricity network provider deployed 11,000 crews to restore electricity, but the
entire city took around ten days to regain power. With limited resources, the service provider must
determine who would get the electricity with higher priorities. An ELN design, in contrast to traditional
supply chain designs, frequently sacrifices cost-based efficiency. Instead, it underscores the need to
incorporate other humanitarian performance metrics into the network design. In this study, we consider
the social vulnerability index (SVI).

Social vulnerability (SV) refers to the susceptibility of social groups or communities to the adverse impact
of natural hazards or disasters, including disproportionate death, injury, loss, or disruption of livelihood.
The groups or communities with a higher vulnerability are likely to have a higher level of damage and


https://uhcl0-my.sharepoint.com/personal/jeongk_uhcl_edu/Documents/Documents/Jeong_UHCL/Research/my%20papers/working%20papers/Conferences/WDSI2025/jeongk@uhcl.edu
mailto:jhong@scsu.edu

loss, indicating that these groups should have higher priorities for disaster prevention and response. The
Centers for Disease Control and Prevention (CDC) developed the SVI through the Geospatial Research,
Analysis & Service Program in the US Agency for Toxic Substances and Disease Registry. CDC SVI
aims to help emergency response planners and public health officials map and identify the communities
that will most likely need support before, during, and after a hazardous event. Studies show that reducing
SV decreases human suffering and economic loss (Flanagan et al., 2011; Cumberbatch et al., 2020).
“FEMA” (n.d.) provides the CDC SVI values for the majority of counties in the US, which are designed
in a way that a county with a higher SVI value has a higher level of vulnerability.
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Figure 1. US 2023 billion-dollar weather and climate disasters (excerpted from Climate.gov, 2024)

Fisher (1997) introduced two complementary concepts for supply chain design: an efficient supply chain
and a responsive supply chain, depending on the uncertainty the supply chain needs to manage. An
efficient supply chain delivers products to customers at the lowest cost, while a responsive supply chain
has the ability to build a high service level under uncertainty. Chopra (2019) claimed that a balanced
supply chain design should consider both characteristics. In this study, we aim to minimize potential loss
and damage via responsiveness while ensuring prompt and efficient delivery of relief items to victims in
the event of a disaster. SVI serves as a performance metric for responsiveness, while the total logistics
cost (TLC), represented by the demand-distance product, measures efficiency. When a disaster occurs,
both efficiency and responsiveness are required. For example, cost minimization searches for the smallest
demand-distance product, while responsiveness focuses on maximizing humanitarian benefits. Thus, we
propose a Goal Programming (GP) formulation where both SVI and TLC are considered simultaneously.
Furthermore, due to resource limitations, disaster responses may occur over multiple periods.
Consequently, our GP model should determine the locations and capacity of facilities, providing relief
distribution plans over multiple periods depending on the facility response capacity.

When an ELN has sufficient response capacity, the decision-maker has a wide range of options because
the ample capacity promptly serves more affected areas. However, when the capacity is severely limited,
it becomes more crucial to prioritize relief activities, as more vulnerable areas may be more susceptible to
damage. Therefore, determining the appropriate operation strategy over multiple periods under capacity



constraints is a crucial aspect of the ELN design. The literature hasn’t extensively addressed this issue.
This paper investigates a multi-period ELN design problem with a capacity constraint, employing GP
model with SVIand TLC in the objective function. The ELN consists of Disaster Recovery Centers (DRCs)
and affected areas. When a disaster strikes, the DRCs serve as permanent warehouses, storing and
distributing relief items to the affected areas. With this model, we aim to address the following research
questions:

e Where to locate DRCs? What are the DRCs’ numbers and pre-stocking levels?

« What distribution channels are used, and how much is the volume of relief items stored and
transported between DRCs and affected areas?

e What is the impact of response capacity constraints on SVI, TLC, and operation strategy over
multiple periods?

o How can we evaluate the performance of the ELNs in terms of SVI/TLC balance?

After the literature review, we explain the social vulnerability index and then move on to the Goal
programming model with SVI and TLC. Next, we provide a case study and observations. Lastly,
conclusions are presented.

LITERATURE REVIEW

According to Cutter et al. (2003), social and place inequalities influence social vulnerability. Cutter et al.
(2003) listed seventeen indicators to measure the underlying cause of social vulnerability. The seventeen
indicators are social status, gender, race and ethnicity, age, commercial and industrial development,
employment loss, rural/urban, residential property, infrastructure and lifelines, renters, occupation, family
structure, education, population growth, medical services, social dependence, and special needs
populations. Cutter et al. (2009) developed the SVI to quantify a place’s relative socioeconomic and
demographic quality in order to understand vulnerability, which is concerned with pre-event embedded
qualities of the social system. Thus, Armas and Garvis (2013) regarded social vulnerability as a predictive
variable that represents potential harm when a risk occurs. Numerous studies demonstrated that the impact
on victims varied depending on their level of vulnerability (Hofflinger et al., 2019; Oulahen et al., 2015).
Evidence shows that people with low incomes, children, elders, disabled people, and residents of high-
rise apartments or mobile homes are more vulnerable (Tasnuva et al., 2021; Yap et al., 2023). Morrow
(1999) revealed that the vulnerability factors often occur in combination. The most vulnerable are those
whose needs are not considered in disaster response planning.

Very few studies on SVI are available from the perspective of emergency logistics network design. We
found only two articles in the nationwide database search, to the best of our knowledge. Arnet and Zobel
(2019) proposed a mixed integer programming (MIP) model formulation for asset pre-position in the
American Red Cross of Wyoming and Colorado. They suggested minimizing risk in the objective function,
which includes hazards, exposure, and SV1 as independent factors. They then determined the pre-stocking
level at each shelter, comparing it to the traditional pre-stocking level. Alem et al. (2021) suggested a
multi-period MIP model that aims to maximize the total sum of SVI as a measure of how responsive a
humanitarian supply chain in Brazil is. They defined the social benefit of an affected area as the relative
difference between the relief service (percentage of victims whose needs are satisfied) with and without
the SVI. Their results show that the social benefit of using SVI is more significant as the vulnerability
level increases. They also asserted that, given the current absence of studies in this area, more research on
the use of SVI in humanitarian logistics is necessary.



The GP with multiple objective functions is a mathematical modeling approach, especially when
objectives conflict with each other. Hong and Jeong (2019) looked at a facility-location and allocation
optimization problem with five competing goals: total line capacity (TLC), maximum coverage distance,
maximum demand-weighted coverage distance, covered demand in case of emergency, and expected
number of uninterrupted supplies. They tried to find a balance between these goals. Hong and Jeong (2020)
also considered both TLC and the expected number of demands satisfied in the emergency backup supply
system. Hong et al. (2022) proposed combining the multi-objective programming model with the three
data envelopment analysis-based methods for designing ELN.

Our study extends the previous research by proposing a GP-based approach to consider both
responsiveness and efficiency, improving practicability for disaster-related decision-makers. Furthermore,
we propose a different ELN operation strategy based on response capacity availability since the capacity
level should significantly impact actual distribution activities. For instance, it is important to balance both
responsiveness and efficiency during a limited capacity period, as the affected areas with higher SVI may
experience more damage. Conversely, when facilities have sufficient capacity, the focus shifts to
efficiency, ensuring that all demands in the affected areas can be satisfied promptly within that period.
We also intend to present an overall productivity metric to evaluate the ELNs generated by GP. The
following is a summary of this study’s contributions:

e The GP model strikes a balance between responsiveness and efficiency to integrate location decisions
at the strategic level, as well as distribution channels and facility capacity at the operational level.

o The study examines the relationship between SVI and TLC and investigates the impact of emergency
response capacity on both.

e Among multiple optimal ELNs based on different weights between SVI and TLC, we propose a
systematic way to evaluate each optimal ELN, determining the best-performing one.

« Based on the best-performing ELN with DRC locations, we present a multi-period capacity-dependent
operation strategy that generates distribution channels from DRCs to affected areas.

SOCIAL VULNERABILITY INDEX

Table 1 illustrates how 15 US census variables, categorized into four distinct themes, drive the CDC SVI.
For multiple years after 2000, ATSDR (2024) calculated the SV for each county’s 15 US census variables.
To construct the SVI, each of the 15 variables, except income, is ranked from lowest to highest scores
across all counties in the US with a non-zero population (lower values with higher ranks). Income is
ranked from highest to lowest since higher incomes indicate less vulnerability. In this way, all counties
with higher ranks indicate lower vulnerability for each variable. Then, the percentile rank (PR), being
calculated for counties using the rank and the total number of data points (N), is expressed by

Rank-1

Percentile Rank (PR) = ——

(1)

The percentile rank maps the county’s ranks to a value between 0 and 1, which is considered the county’s
SVI value. A county with a larger SVI value is considered more vulnerable to hazards and disasters. In
addition, a theme-level percentile rank is calculated based on the sum of the percentile ranks of the
variables comprising the themes. Finally, the overall SVI for each county is calculated using the sum of
the percentile ranks of the four themes. This process can be repeated for each geographical region, such
as an individual state.



Overall Theme Variables Descriptions
e.g., $12,140 for one person in a
Below Poverty family/household
Socioeconomic Status | Unemployed Number
Income Amount
No High School Diploma Number
Household Age 65 or Older Number
2 Composition & Age 17 or Younger . - Number
s Disability Older Than Age 5 With a Disability Number
S Single-Parent Households Number
= Minority Status & Minority Number
> Language Speaks English "Less Than Well" Number
= Multiunit Structures Number
g Mobile Homes Number
o e.g., Occupied housing units with
Housing & Crowding more than one person per room are
Transportation _ considered crowded
No Vehicle Number

Group Quarters

Not all people live in housing units.
e.g., nursing homes, correctional

facilities, etc.

Table 1. 15 Census variables and themes in SVI.

GOAL PROGRAMMING MODEL WITH SVI AND TLC

To design ELNs, we develop a GP-based mathematical model with TLC and SV1 in the objective function.
Consider an ELN with Disaster Recovery Centers (DRCs) and affected areas (AAs), where DRCs should
feed AAs. The GP will identify the locations and capacities of DRCs and relief item distribution channels
from DRCs to AAs with multi-sourcing when a major disaster occurs.

The following nomenclature is used:

Sets:
M
C

Parameters:

Index set of potential locations for DRCs and AAs, (j =1, 2, ..., M andm=1,2, ...M).
Index set of potential pure DRCs without any fictitious DRC (k =1,...,C)

Minimum number of AAs that DRC j can cover

Maximum number of AAs that DRC j can cover

Cost of shipping one unit of item per mile from DRC jto AAm
Designed capacity of DRC j

Distance between DRC jand AAm

Demand for AA m, in units/period

Cost per capacity at DRC j

Maximum number of DRCs can be built

Holding cost per unit per period at DRC j

SVl value at AAm

A real number between 0 and 1

Minimum of TLC

Maximum of TLC

Maximum of SVI

Facility’s response capacity ratio (i.e., percentage of demand satisfied) when a disaster occurs



Decision Variables:

F; Binary variable deciding whether a DRC j is located at AA j or not
cap; Facility storage capacity at DRC j
Vim Percentage of AA m’s demand, satisfied by DRC j. It is a real number between zero and one, implying multi-

sourcing. That is, an area m can be supplied by multiple DRCs.
Also, we make the following assumptions for the formulation.

Assumptions:
Q) A DRC can be located in any potential area. If a DRC is located at j, the distance, d;,, is assumed to equal zero if j =

m. Also, the area where a facility is located is assumed to be covered by that facility; that is, y;,, = 1if j=m.
(i) Each DRC has a designed capacity represented by CAP™**, and the actual storage capacity (cap) is determined by

demands in the network. Thus, the storage capacity cannot exceed the designed capacity.

(iii) Each DRC follows a periodic review base-stock inventory policy with zero lead time for simplicity.

(iv) Each DRC has enough delivery (transportation) resources to deliver the items directly to each AA.

(v) TLC consists of transportation costs from DRCs to AAs and inventory costs at DRCs. The inventory cost at DRC j
depends on the periods during which inventory is stored.

We first define TLC in Eq. (2). We use the product of distance and demand as cost in the first term to
consider both distance and population to satisfy. The second term represents inventory cost. TLC
minimization is regarded as a good performance metric for efficiency because it intends to minimize cost
through the shortest path delivery.

TLC = Zjec Ymep VimDmdimCim +Zjec(capj — 0.5 mep ijDm) h; 2)

We add one fictitious DRC to the model to meet flow conservation constraints. The fictitious DRC has a
zero SVI, zero demand, and enough capacity to satisfy all demands from all populations, with the distance
from the fictitious DRC to actual AAs set to infinite. Thus, the fictitious DRC is used in the case of the
actual DRCs that are fully utilized. In other words, any TLC from the fictitious DRC is considered a
penalty for the capacity shortage. When we replace ¢j” with ‘k’ in Eq (2), it calculates TLC solely for the
actual DRCs, excluding the fictitious DRC. Now, since we only compute the sum of SVIs for the actual
DRCs, we define SVI as follows:

SVI = Ymep Xkec SVIkYim 3
The GP is defined as below:

Minimize a(TLC-TLCumin)/(TLCmax — TLCumin) + (1~ 0)(SVImax — SVI)/SVImax ()

Subject to:
Z Yim=1  VmEP (5)

jec
> B Eme 6)

jec
cap; < F; CAP™™, Vj€C (7)



Z Dyyjm < capj, VjecC (8)

meP

Yim < Fj, Vjand Ym € M 9)

z cap, < (Z D,,)RC (11)
k mepP

The objective function in (4) minimizes TLC’s and SVI’s percentage deviations from the target values.
The first term represents TLC’s normalized percentage deviation, and the second represents SVI’s
normalized percentage deviation. Note that SVImin is zero. Constraints (5) ensure that one or more DRCs
cover each area, thereby enabling multi-sourcing. Constraints (6) establish the maximum number of DRCs
for construction. Constraints (7) guarantee that the storage capacity at each DRC should match or surpass
the designed capacity upon construction. Constraints (8) ensure that DRC can only cover each AA within
its storage capacity. Constraints (9) specify that DRC j covers each AA only when DRC is present at area
j. Constraints (10) ensure that when DRC j becomes an AA, it feeds itself. Lastly, constraint (11) assumes
that not all emergency demands are always satisfied by actual DRCs. From an operation strategy
perspective, if the total demand from all AAs exceeds the facility’s storage capacity, the remaining
demand should be satisfied in subsequent periods. RC represents facility’s response capacity ratio.
Technically, the fictitious DRC fulfills the unmet demand beyond RC during the current period.

To solve the solution for GP, we must first obtain TLCmax, TLCmin, and SVImax. TLCnin is Obtained by
minimizing equation (2) subject to constraints (4) to (11), and SVImax is by maximizing equation (3) subject
to constraints (4) to (11). TLC, when SVImax is calculated, is set to TLCmax in that SVImax sacrifices TLC to
maximize SVI.

The GP will generate multiple optimal solutions at different « values, weights between responsiveness
and efficiency. Therefore, once the GP generates optimal solutions, it is crucial to pinpoint the best-
performing solution across all values. We may consider TLC to be an input to the network and SVI to be
the output. Therefore, we utilize the following productivity formula to measure the overall performance
of all ELNSs:

productivity = % (12)

Multi-Period Capacity-Dependent Operation Strategy

This section presents the customized capacity-dependent operation strategy, which indicates pre-stocking
capacity and corresponding distribution channels per period using TLC and SVI. When demands from
affected areas exceed the facility’s response capacity, distribution activities require multiple periods to
balance both TLC and SVI from an operational perspective. When the demand falls below the actual
response capacity, we use TLC to satisfy all demands, eliminating the need to differentiate affected areas
based on SVI values. Figure 2 describes this multi-period capacity-dependent operation strategy.



For this, we further define the following nomenclature.

D Total demands for relief items.

RCP Facility’s response capacity per period. This is the maximum demand that can be satisfied per period,
determined by RC. Because of this limit, it may take multiple periods to complete the distribution work.

st =GP() GP with its optimal solution, s;= (F’, cap; ., yjm,) as output at time t.

s¢ = GP(./s{~;) GP with its optimal solution, s;= (F';, cap;j ., ¥jm,) @ output at time t with s;_; given as input.

(1) set t = 0// period
/lcheck whether all demands are satisfied or not.
(2) if D > RCP then
{//it takes multiple periods from here
3) ift =0 then
4) {solve GP (.) with TLC and SVI;}
(5) else
(6) {solve GP (./s{_;) with TLC and SVI;}
7) D =D - RCP;
(8) t=t+1;
9) goto line (2)
}
(10) else
{//this is the last distribution since the remaining demands are under current period’s capacity.
(1) if t=0 then
(12) {solve GP (.) with TLC only;}
(13) else
(14) {solve GP (./s{_;) with TLC only;}
(15) stop;
}

Figure 2. Multi-period distribution strategy with GP

In line 2, if the remaining demand, D, at time t, exceeds the facility’s response capacity per period, RCP,
we need to solve GP with both TLC and SVI, given the solution at t-1, as seen in line 6, since both TLC
and SVI affect the solution. If it happens in the first period (line 3), we solve GP with TLC and SVI without
any prior solution (line 4). After lines 4 or 6, we need to update D (line 7) and t (line 8) to reflect the
remaining demand and current time, respectively. Continue to solve GP until the response capacity can
handle the remaining demand. Once we reach that phase (line 10), we need to solve GP with a single goal
of minimizing TLC since the current response capacity should be able to satisfy demands from affected
areas; we do not need to consider SVI (line 12 or line 14).

CASE STUDY AND OBSERVATIONS

To evaluate the behavior of the GP model and its multiperiod operation strategy, we conduct a case study
using SVI values in South Carolina based on the 2018 US census (ATSDR, 2024). The President of the
United States declared a major disaster, and the Federal Emergency Management Agency (FEMA) opened
DRCs to relieve the affected counties. We aim to ascertain the locations and capacities (pre-stocking level)
of DRCs, as well as the channels used for distributing relief items from DRCs to counties. We also want
to see the relationship between the response capacity, SVI, and TLC.

We cluster forty-six counties in South Carolina based on proximity and population into twenty counties
for computational simplicity. Next, we select one city from each clustered county using a centroid



approach. The entire population within the clustered county is assumed to reside in that city. The distance
between these cities is considered to be the distance between counties. For the city representing multiple
counties (e.g., a composite city such as Anderson), we use the population of each county to calculate the
weighted average of SVI for the mixed city. Table 2 lists 20 composite cities with populations, SVI values,
and rankings. Table 3 lists all costs and capacity parameters for the case study.

No City County POP, Dm (K) SVim SVI Rank
1 Anderson Anderson/Oconee/Pickens 403 0.243 13
2 Beaufort Beaufort/Jasper 218 0.178 16
3 Bennettsville Marlboro/Darlington/Chesterfield 139 0.515 7
4 Conway Horry 345 0.244 12
5 Georgetown Georgetown/Williamsburg 93 0.504 8
6 Greenwood Greenwood/Abbeville 96 0.677 5
7 Hampton Hampton/Allendale 28 0.698 3
8 Lexington Lexington/Newberry/Saluda 353 0.154 17
9 McCormick McCormick/Edgefield 36 0.522 6
10 Moncks Corner  Berkeley 221 0.200 15
11 Orangeburg Orangeburg/Bamberg/Calhoun 116 0.681 4
12 Rock Hill York/Chester/Lancaster 401 0.086 19
13 Spartanburg Spartanburg/Cherokee/Union 398 0.396 9
14 Sumter Sumter/Clarendon/Lee 158 0.811 1
15 Walterboro Colleton/Dorchester 199 0.134 18
16 Aiken Aiken/Barnwell 191 0.382 10
17 Charleston Charleston 407 0.001" 20
18 Columbia Richland/Fairfield/Kershaw 503 0.309 11
19 Florence Florence/Dillon/Marion 200 0.701 2
20 Greenville Greenville/Laurens 583 0.231 14
Total 5,088 7.666

*The original SVI value at Charleston is 0. We change it to 0.001 to consider in the model.
Table 2. Data for DRC location-allocation

Symbol Meaning Value
Cim Cost of shipping one unit of demand per mile from DRC j to aream $0.10, Vj and m
CAP™™ Designed capacity for DRC j 2,600, vj
h; Holding cost per item per unit time at DRC j $5.00, vj
Fmax Maximum number of DRCs to be built 5
RC Facility’s response capacity ratio per period 60%~100% of the total
demand

Table 3. Parameters for the case study

Using the GP model, we obtain solutions by changing the weights of TLC from 0.0 to 1.0 by a 0.2
increment and the facility’s response capacity per period from 100% to 60% by a 20% decrement. Table
4 summarizes the maximum, minimum TLCs, and maximum SVI obtained by GP for each response
capacity rate. When RC is set to 100%, the corresponding ELN can provide services to the entire
population of all counties (5,088K), generating the maximum SVI, the sum of all SVIs for all counties
(7.666). When SVImax is obtained for each RC, we set the total logistics cost to TLCmax, as we are not
attempting to minimize TLC at that time. However, as the response capacity ratio decreases (not all
demand is satisfied), maximizing SVI will carefully select counties with higher SVI values at the cost of
TLC for a balanced ELN design.



RC TLCrmax ($) TLCnmin ($) SVImax
100% 2.0365e+6 6.7627e+5 7.666
80% 5.2633e+7 5.1553e+7 7.496
60% 1.0324e+7 1.0243e+8 7.019

Table 4. TLCmin and SVInax for GP

Using the results in Table 4, Table 5 shows all the solutions by GP and the productivity, mean, and
standard deviation (std) for each performance metric for each pair of (RC, o). It also shows the ratio of
standardized actual SV1 to standardized actual TLC. When « is set to zero, the GP model maximizes only
SVI (or minimizes the gap percent from SVImax). We recognize that the solution at & = 1.0 is the same as
in the TLC minimization problem. The total TLC considers the logistics cost for all DRCs, including the
fictitious one. In contrast, the actual TLC only considers the logistics cost for the actual DRCs, excluding
the fictitious DRC. In the case of SVI, since the fictitious DRC has zero SVI, there is only one sum of SVI
value per ELN.

a 0.0 0.2 0.4 0.6 0.8 1.0 Mean Std
Actual TLC ($) 713,653 676,272 676,272 676,272 676,272 676,272 682,502 15,261
RC=100% SVI 7.67 7.67 7.67 7.67 7.67 7.67 7.67 0.00
Total TLC ($) 2.04E+06 6.76E+05 6.76E+05 6.76E+05 6.76E+05 6.76E+05| 9.03E+05 555,324
Productivity 1.68 1.77 1.77 1.77 1.77 1.77 1.76 0.04
Actual TLC ($) 563,089 544,321 544,321 544,321 544,321 541,074 546,908 8,033
RC=80% Svi 7.50 7.49 7.49 7.49 7.49 6.51 7.33 0.40
Total TLC ($) 5.26E+07 5.16E+07 5.16E+07 5.16E+07 5.16E+07 5.16E+07 | 5.17E+07 440,001
Productivity 2.08 2.15 2.15 2.15 2.15 1.88 2.09 0.11
Actual TLC ($) 422,751 414,703 414,703 414,703 405,622 401,214 | 412283 7,669
RC=60% SViI 7.02 7.02 7.02 7.02 6.83 2.57 6.25 1.80
Total TLC ($) 1.03E+08 1.02E+08 1.02E+08 1.02E+08 1.02E+08 1.02E+08 | 1.03E+08 329,225
Productivity 2.59 2.64 2.64 2.64 2.63 1.00 2.36 0.67

Table 5. Results from the GP model per response capacity

We plot actual TLC vs. SVI for each response capacity ratio in Figure 3. From Figure 3 and Table 5, the
following observations are made:

(1) As a increases, TLC decreases, and SV increases.

(2) The shortage of response capacity leads to a decrease in both actual TLC and SVI, as they serve fewer
counties (the trend is evident in Figure 3). However, the increase in total TLC can be attributed to the
rising penalty costs imposed by the fictitious DRC.

(3) At each capacity, TLC has a larger variation than SVI. However, as capacity shortage increases, SVI
variation increases, as indicated by the standard deviation in Table 5 and Figure 3. We standardize
TLC and SVI and calculate the productivity. As capacity shortages increase, productivity increases
(Figure 4), indicating that SVI becomes more sensitive to capacity.

(4) The number of ELNs with the highest productivity decreases when the capacity shortage increases.
When there is no capacity shortage (RC = 100%), GP generates 5 (out of 6) ELNs with the highest
productivity, which decreases to 4 and 3 for RC = 80% and 60%, respectively. In other words, as the
capacity shortage increases, the discriminating power of the GP increases.
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Actual TLC vs. Actual SVI
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Figure 3. Pure TLC vs. SVI for each response capacity

The observations (3) and (4) provide important insight to the emergency management decision-maker.
Productivity quantifies the value of the optimized ELN. It increases when capacity shortage increases. For
example, in the case of (a« = 0.4), when the ELN has ample capacity for demand, the productivity is 1.77.
If we set the optimization value to 1, the productivity increases to 2.15 (21%) and 2.64 (49%) for 20%
and 40% capacity shortages, respectively. That is, for each dollar spent, the value of SVI significantly
increases, indicating saving more victims, when capacity shortages occur. Therefore, choosing the ELNs
with the highest productivity value is the way to select the best-performing ELN from the decision-
maker’s perspective.

Productivity vs. Weights
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Figure 4. Productivity vs. Weights for Response Capacity

Now, we discuss the capacity-dependent multi-period distribution strategy, assuming that the response
capacity ratio per period is 60%. It takes two periods for the ELN with 60% capacity ratio to provide
emergency service to all potential demands of 5,088K. According to Table 5, ELNs with « = 0.2, 0.4, and
0.6 generate the same level of the highest productivity. We randomly choose the ELN with & = 0.4 as an
example and show the distribution activities for two periods based on the procedure in Figure 2. Solving
the GP with (RC = 60% o = 0.4) generates Greenville, Columbia, and Florence as DRC. We use a solid
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arrow and a dotted arrow to indicate the distribution activities for periods 1 and 2, respectively. Columbia
and Florence cover 60% of the demand for period 1, while the three DRCs cover the remaining demand.
Greenville is used only in period 2. Both Greenville and Columbia cover Rockhill during period 2.
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Figure 5. An ELN with distribution channel (RC = 60% o = 0.4)

Note that to obtain the ELN in Figure 5, GP should generate the ELNs with minimization of TLC (Figure
6) and with maximization of SVI (Figure 7), respectively. In Figure 6, we can see the highest efficiency
level is achieved at the cost of SVI when four DRCs are utilized for two periods with four distinctive
distribution clusters. Figure 7 demonstrates that by heavily utilizing Florence as the DRC for the first
period, we can achieve the ELN with the highest SV1 at the expense of TLC.

Table 6 summarizes the performance comparison of the three ELNs per period. GP uses both TLC and
SVIin period 1, but only TLC in period 2. ELN (a = 0.4) achieves about 96.64% of TLCmin and 100% of
SVImax, With the highest productivity during the 1% period. Note that we decide it in the 2" period based
on the expected results from period 1. We should interpret the decisions from periods 1 and 2 with the
understanding that SVI serves as a predictor of potential harm when a risk materializes. Otherwise (that
is, if we know no further risk or vulnerability associated with period 1 in advance or if we ignore it), ELN
(o = 1.0) should be used since it generates the best result so that the sum of TLCs for periods 1 and 2 is
the smallest with the maximized SVI.

Network Period 1 Period 2
TLC ($) SVI TLC Gap (%) SVI Gap (%) TLC ($) SVI TLC Gap (%)
ELN («=0.4) 414,703 7.019™ 3.36 0.00 274,209 0.65 2.06
ELN (a=1.0) 401,214" 2.568 0.00 63.43 276,477 5.01 291
ELN (a=0.0) 422,751 7.019™ 5.37 0.00 268,665 0.65 0.00

“minimum; ~maximum

Table 6. Performance of ELN with RC = 60% for two periods
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Figure 6. An ELN with distribution channel (RC = 60% « = 1.0)
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Figure 7. An ELN with distribution channel (RC = 60% « = 0.0)

CONCLUSIONS

This paper examines a multi-period ELN design problem with a response capacity constraint. We apply
Goal Programming with the Social Vulnerability Index (SVI) and Total Logistics Cost (TLC) to find the
best solution for responsiveness and efficiency. We recognize that very few studies have utilized SVI in
ELN design. Notably, this research is unique in that it focuses on the impact of the response capacity
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shortage on the design, deriving a capacity-constrained relief item distribution strategy over multiple
periods and quantifying the value of optimization by defining productivity.

The case study analysis in South Carolina demonstrates the GP’s applicability and the resulting operation
strategy over two periods. The case-based results show that GP with TLC and SVI generates highly
competitive ELNs compared to the single objective mixed integer programming model. We note that SVI
becomes more sensitive as the lack of capacity grows, providing more discriminating power to the ELN
design. At the same time, productivity, defined as the ratio of SVI to TLC, rises as the discriminating
power of the GP increases.

In the context of humanitarian logistics, ELN design problems with recent extreme weather conditions
worldwide become increasingly critical in terms of risk preparation and response. Given the current
emphasis on social responsibility, we assert that this study offers valuable insights to emergency
management practitioners about the influence of capacity on strategic design and operational strategy
across various timeframes, as well as the humanitarian value embodied by SVI.
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